Skip to main content
Log in

Radiation from a Uniformly Accelerated Charge and the Equivalence Principle

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We argue that purely local experiments can distinguish a stationary charged particle in a static gravitational field from an accelerated particle in (gravity-free) Minkowski space. Some common arguments to the contrary are analyzed and found to rest on a misidentification of “energy.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. B. Bonnor, “A new equation of motion for a radiating charged particle,” Proc. Roy. Soc. London A 337, 591–598 (1974).

    Google Scholar 

  2. D. Boulware, “Radiation from a uniformly accelerated charge,” Ann. Phys. (New York) 124, 169–187 (1980).

    Google Scholar 

  3. B. DeWitt and R. Brehme, “Radiation damping in a gravitational field,” Ann. Phys. (New York) 9, 220–259 (1960).

    Google Scholar 

  4. P. A. M. Dirac, “Classical theories of radiating electrons,” Proc. Roy. Soc. London A 167, 148 ff. (1938).

  5. S. Parrott, Relativistic Electrodynamics and Differential Geometry (Springer, New York, 1987).

    Google Scholar 

  6. S. Parrott, “Unphysical and physical(?) solutions of the Lorentz–Dirac equation,” Found. Phys. 23, 1093–1121 (1993).

    Google Scholar 

  7. S. Parrott, “Radiation from a particle uniformly accelerated for all time,” Gen. Relat. Gravit. 27, 1463–1472 (1995), gr-qc/9711027.

    Google Scholar 

  8. A. K. Singal, “The equivalence principle and an electric charge in a gravitational field,” Gen. Relat. Gravit. 27, 953–967 (1995).

    Google Scholar 

  9. A. K. Singal, “The Equivalence Principle and an Electric Charge in a Gravitational Field II. A Uniformly Accelerated Charge Does Not Radiate,” Gen. Relat. Gravit. 27, 1371–1390 (1997).

    Google Scholar 

  10. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975).

    Google Scholar 

  11. R. Peierls, Surprises in Theoretical Physics (Princeton University Press, Princeton, NJ, 1979).

    Google Scholar 

  12. R. Sachs and H. Wu, General Relativity for Mathematicians (Springer, New York, 1977).

    Google Scholar 

  13. W. Rindler, Essential Relativity, 2nd edn. (Springer, New York, 1977).

    Google Scholar 

  14. J. M. Hobbs, “A vierbein formalism of radiation damping,” Ann. Phys. 47, 141–165 (1968).

    Google Scholar 

  15. T. Fulton and F. Rohrlich, “Classical radiation from a uniformly accelerated charge,” Ann. Phys. (New York) 9, 499–517 (1960).

    Google Scholar 

  16. C. J. Eliezer, “The hydrogen atom and the classical theory of radiation,” Proc. Camb. Phil. Soc. 39, 173 ff (1943).

  17. S. F. Gull, “Charged particles at potential steps,” in The Electron: New theory and experiment, D. Hestenes and A. Weingartshofer, eds. (Kluwer Academic, Dordrecht, 1991).

    Google Scholar 

  18. A. Kovetz and G. Tauber, “Radiation from an accelerated charge and the principle of equivalence,” Amer. J. Phys. 37, 382–385 (1969).

    Google Scholar 

  19. E. Taylor and J. Wheeler, Spacetime Physics (Freeman, New York, 1966), pp. 141–143.

    Google Scholar 

  20. F. G. Friedlander, The Wave Equation on Curved Spacetime (Cambridge University Press, Cambridge, 1976).

    Google Scholar 

  21. A. Shariati and M. Khorrami, “Equivalence Principle and Radiation by a Uniformly Accelerated Charge,” Found. Phys. Lett. 12, 427–439 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrott, S. Radiation from a Uniformly Accelerated Charge and the Equivalence Principle. Foundations of Physics 32, 407–440 (2002). https://doi.org/10.1023/A:1014861329235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014861329235

Navigation