Skip to main content
Log in

Clifford-Algebra Based Polydimensional Relativity and Relativistic Dynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Starting from the geometric calculus based on Clifford algebra, the idea that physical quantities are Clifford aggregates (“polyvectors”) is explored. A generalized point particle action (“polyvector action”) is proposed. It is shown that the polyvector action, because of the presence of a scalar (more precisely a pseudoscalar) variable, can be reduced to the well known, unconstrained, Stueckelberg action which involves an invariant evolution parameter. It is pointed out that, starting from a different direction, DeWitt and Rovelli postulated the existence of a clock variable attached to particles which serve as a reference system for identification of spacetime points. The action they postulated is equivalent to the polyvector action. Relativistic dynamics (with an invariant evolution parameter) is thus shown to be based on even stronger theoretical and conceptual foundations than usually believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Fock, Phys. Z. Sowj. 12, 404 (1937).

    Google Scholar 

  2. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941); 14, 588 (1941); 15, 23 (1942).

    Google Scholar 

  3. R. P. Feynman, Phys. Rev. 84, 108 (1951).

    Google Scholar 

  4. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Google Scholar 

  5. W. C. Davidon, Phys. Rev. 97, 1131 (1955); 97, 1139 (1955).

    Google Scholar 

  6. L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973). L. P. Horwitz and F. Rohrlich, Phys. Rev. D 24, 1528 (1981); 26, 3452 (1982). L. P. Horwitz, R. I. Arshansky, and A. C. Elitzur, Found. Phys. 18, 1159 (1988). R. Arshansky, L. P. Horwitz, and Y. Lavie, Found. Phys. 13, 1167 (1983). L. P. Horwitz, in Old and New Questions in Physics, Cosmology, Philosophy and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York, 1983). L. P. Horwitz and Y. Lavie, Phys. Rev. D 26, 819 (1982). L. Burakovsky, L. P. Horwitz, and W. C. Schieve, Phys. Rev. D 54, 4029 (1996). L. P. Horwitz and W. C. Schieve, Ann. Phys. 137, 306 (1981).

    Google Scholar 

  7. J. R. Fanchi, Phys. Rev. D 20, 3108 (1979). See also the review J. R. Fanchi, Found. Phys. 23, 287 (1993), and many references therein. J. R. Fanchi, Parametrized Relativistic Quan-tum Theory (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  8. H. Enatsu, Progr. Theor. Phys. 30, 236 (1963); Nuovo Cimento A 95, 269 (1986). F. Reuse, Found. Phys. 9, 865 (1979). A. Kyprianidis, Phys. Rep. 155, 1 (1987). R. Kubo, Nuovo Cimento A 293 (1985). M. B. Mensky and H. von Borzeszkowski, Phys. Lett. A 208, 269 (1995). J. P. Aparicio, F. H. Gaioli, and E. T. Garcia-Alvarez, Phys. Rev. A 51, 96 (1995); Phys. Lett. A 200, 233 (1995). L. Hannibal, Int. J. Theoret. Phys. 30, 1445 (1991). F. H. Gaioli and E. T. Garcia-Alvarez, Gen. Relativ. Grav. 26, 1267 (1994).

    Google Scholar 

  9. M. PavšIć, Found. Phys. 21, 1005 (1991); Nuovo Cim. A104, 1337 (1991); Doga, Turkish J. Phys. 17, 768 (1993).

    Google Scholar 

  10. W. M. Pezzaglia, Jr., “Classification of multivector theories and modification of the postulates of physics,” e-Print Archive: gr-qc/9306006; “Polydimensional Relativity, a classical generalization of the automorphism invariance principle,” e-Print Archive: gr-qc/9608052; “Physical applications of a generalized Clifford calculus: Papapetrou equations and metamorphic curvature,” e-Print Archive: gr-qc/9710027. W. M. Pezzaglia, Jr. and J. J. Adams, “Should metric signature matter in Clifford algebra formulation of physical theories?,” e-Print Archive: gr-qc/9704048. W. M. Pezzaglia, Jr. and A. W. Differ, “A Clifford dyadic superfield from bilateral interactions of geometric multispin Dirac theory,” e-Print Archive: gr-qc/9311015. W. M. Pezzaglia, Jr., “Dimensionally democratic calculus and principles of polydimensional physics,” e-Print Archive: gr-qc/9912025.

  11. C. Castro, “The string uncertainty relations follow from the new relativity principle,” e-print Archive: hep-th/0001023; “Is quantum spacetime infinite dimensional?,” e-Print Arhive: hep-th/0001134; “Chaos, solitons and fractals” 11, 1721 (2000). C. Castro and A. Granik, “On M theory, quantum paradoxes and the new relativity,” e-print Archive: physics/0002019.

  12. M. Pavšič, “Clifford algebra as a useful language for geometry and physics, ” in Geometry and Physics, Proceedings of the 38th Internationale Universitätswochen für Kern-und Teilchenphysik, Schladming, Austria, January 9-16, 1999, H. Gauster, H. Grosse, and L. Pittner, eds. (Springer, Berlin, 2000).

    Google Scholar 

  13. M. Pavšič, The Landscape of Theoretical Physics: A Global View (Kluwer Academic, Dordrecht, 2001).

    Google Scholar 

  14. D. Hestenes, Space-Time Algebra (Gordon 6 Breach, New York, 1966); Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).

    Google Scholar 

  15. S. Teitler, Suppl. Nuovo Cimento III, 1 (1965); Suppl. Nuovo Cimento III, 15 (1965); J. Math. Phys. 7, 1730 (1966); J. Math. Phys. 7, 1739 (1966).

    Google Scholar 

  16. L. P. Horwitz, J. Math. Phys. 20, 269 (1979). H. H. Goldstine and L. P. Horwitz, Math. Ann. 164, 291 (1966).

    Google Scholar 

  17. C. Rovelli, Classical and Quantum Gravity 8, 297 (1991); 8 317 (1991).

    Google Scholar 

  18. B. S. DeWitt, in Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962).

    Google Scholar 

  19. M. Pavšič, Found. Phys. 26, 159 (1996).

    Google Scholar 

  20. J. Greenstie, Class. Quantum Grav. 13, 1339 (1996); Phys. Rev. D 49, 930 (1994). A. Carlini and J. Greensite, Phys. Rev. D 52, 936 (1995); 52, 6947 (1955); 55, 3514 (1997).

    Google Scholar 

  21. J. Brian and W. C. Schieve, Found. Phys. 28, 1417 (1998).

    Google Scholar 

  22. A. O. Barut and N. Zanghi, Phys. Rev. Lett. 52, 2009 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavšič, M. Clifford-Algebra Based Polydimensional Relativity and Relativistic Dynamics. Foundations of Physics 31, 1185–1209 (2001). https://doi.org/10.1023/A:1017599804103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017599804103

Keywords

Navigation