Skip to main content
Log in

Synonymous Logics

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

This paper discusses the general problem of translation functions between logics, given in axiomatic form, and in particular, the problem of determining when two such logics are “synonymous” or “translationally equivalent.” We discuss a proposed formal definition of translational equivalence, show why it is reasonable, and also discuss its relation to earlier definitions in the literature. We also give a simple criterion for showing that two modal logics are not translationally equivalent, and apply this to well-known examples. Some philosophical morals are drawn concerning the possibility of having two logical systems that are “empirically distinct” but are both translationally equivalent to a common logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Birkhoff, G. (1967): Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25.

  • Chellas, B. F. (1980): Modal Logic: An Introduction, Cambridge University Press, Cambridge.

    Google Scholar 

  • Czelakowski, J. (1980): Equivalential logics I, II, Studia Logica 40, 227–236, 335–372.

    Google Scholar 

  • Da Silva, J., D'Ottaviano, M., and Sette, A. (1999): Translations between logics, in X. Casedo and C. Montenegro (eds), Models, Algebras and Proofs, Marcel Dekker, New York, pp. 435–448.

    Google Scholar 

  • De Bouvère, K. (1965): Synonymous theories, in J. Addison, L. Henkin and A. Tarski (eds), Symposium on the Theory of Models, North-Holland, pp. 402–406.

  • Epstein, R. (1990): The Semantic Foundations of Logic. Vol. 1: Propositional Logics, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hughes, G. and Cresswell, M. (1996): A New Introduction to Modal Logic, Routledge.

  • Jónsson, B. and Tarski, A. (1951): Boolean algebras with operators. Part I, Amer. J. Math. 73, 891–939.

    Google Scholar 

  • Jónsson, B. and Tarski, A. (1952): Boolean algebras with operators. Part II, Amer. J. Math. 74, 127–162.

    Google Scholar 

  • Kanger, S. (1968): Equivalent theories, Theoria 34, 1–6.

    Google Scholar 

  • Kirk, R. (1982): On three alleged rivals to homophonic translation, Philos. Stud. 42, 409–418.

    Article  Google Scholar 

  • Kleene, S. (1952): Introduction to Metamathematics, Van Nostrand, Princeton.

    Google Scholar 

  • Krajíček, J. (1996): Bounded Arithmetic, Propositional Logic and Complexity Theory, Cambridge University Press.

  • Kuhn, S. T. (1977): Many-sorted Modal Logics, Uppsala University Filosofiska Studier Number 29.

  • Lenzen, W. (1979): Epistemologische Betrachtungen zu [S4,S5], Erkenntnis 14, 33–56.

    Article  Google Scholar 

  • Massey, G. (1978): Indeterminacy, inscrutability, and ontological relativity, in Studies in Ontology, Amer. Philosophical Quarterly Monograph Ser. 9, Basil Blackwell.

  • McKinsey, J. and Tarski, A. (1948): Some theorems about the sentential calculi of Lewis and Heyting, J. Symbolic Logic 13, 1–15.

    Google Scholar 

  • Montague, R. M. (1957): Contributions to the axiomatic foundations of set theory, PhD thesis, University of California, Berkeley.

    Google Scholar 

  • Pelletier, F. J. (1984a): The not-so-strange modal logic of indeterminacy, Logique et Anal. 108, 415–422.

    Google Scholar 

  • Pelletier, F. J. (1984b): Six problems in “translational equivalence”, Logique et Anal. 108, 423–434.

    Google Scholar 

  • Pollard, S. (1998): Homeomorphism and the equivalence of logical systems, Notre Dame J. Formal Logic 39, 422–435.

    Article  Google Scholar 

  • Prawitz, D. and Malmnäs (1968): A survey of some connections between classical, intuitionistic and minimal logic, in H. Schmidt, K. Schütte and H.-J. Thiele (eds), Contributions to Mathematical Logic, North-Holland, pp. 215–229.

  • Prior, A. (1967): Past, Present and Future, Oxford University Press.

  • Prucnal, T. and Wroński, A. (1974): An algebraic characterization of the notion of structural completeness, Bull. Sec. Logic Polish Acad. Sci. 3, 45–52.

    Google Scholar 

  • Quine, W. (1960): Word and Object, MIT Press.

  • Segerberg, K. (1982): Classical Propositional Operators, Clarendon Press, Oxford.

    Google Scholar 

  • Sobociński, B. (1964): Modal system S4.4, Notre Dame J. Formal Logic 5, 305–312.

    Google Scholar 

  • Thomason, S. (1974): Reduction of tense logic to modal logic I, J. Symbolic Logic 39, 549–551.

    Google Scholar 

  • Thomason, S. (1975): Reduction of tense logic to modal logic II, Theoria 3, 154–169.

    Google Scholar 

  • Troelstra, A. S. and van Dalen, D. (1988): Constructivism in Mathematics: An Introduction, North-Holland, Amsterdam.

    Google Scholar 

  • White, N. (ed.) (1986): Theory of Matroids, Cambridge University Press.

  • Wójcicki, R. (1988): Theory of Logical Calculi, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Zeman, J. J. (1971): A study of some systems in the neighbourhood of S4.4, Notre Dame J. Formal Logic 12, 341–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelletier, F.J., Urquhart, A. Synonymous Logics. Journal of Philosophical Logic 32, 259–285 (2003). https://doi.org/10.1023/A:1024248828122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024248828122

Navigation