Skip to main content
Log in

Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A continuous family of static spherically symmetric solutions of Einstein’s vacuum field equations with a spatial singularity at the origin \( r = 0 \) is found. These solutions are parametrized by a real valued parameter \( \lambda \) (ranging from 0 to 1) and such that the radial horizon’s location is displaced continuously towards the singularity (\( r = 0 \)) as \( \lambda \) increases. In the extreme limit \( \lambda = 1\), the location of the singularity and horizon merges leading to a null singularity. In this extreme case, any infalling observer hits the null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the fire wall problem and the complementarity controversy in black holes. An heuristic argument is provided how one might avoid the Hawking particle emission process in this extreme case when the singularity and horizon merges. The field equations due to a delta-function point-mass source at \( r = 0 \) are solved and the Euclidean gravitational action corresponding to those solutions is evaluated explicitly. It is found that the Euclidean action is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions \( D \ge 3 \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank Matej Pavsic for a discussion on other choices for the radial functions.

References

  1. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? arXiv:1207.3123

  2. Brillouin, M.: The singular points of Einstein’s universe. J. Phys. Rad 23, 43 (1923); English translation by S. Antoci can be found at physics/0002009

  3. Castro, C.: The Euclidean gravitational action as black hole entropy, singularities, and spacetime voids. J. Math. Phys. 49, 042501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Colombeau, J.F.: New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  5. Colombeau, J.F.: Elementary introduction to Generalized Functions. North Holland, Amsterdam (1985)

    MATH  Google Scholar 

  6. Dvali, G., Gomez, C.: Black hole macro-quantumness. arXiv:1212.0765

  7. Einstein, A.: Der Feldgleichungen der Gravitation. Preuss. Akad. Wiss. Berlin. 844 (1915)

  8. Fischbach, E., Talmadge, C.L.: The Search for Non-Newtonian Gravity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  9. Fronsdal, C.: Completion and embedding of the Schwarzschild solution. Phys. Rev. 116, 778 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  10. Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to Relativity. Kluwer Series on Mathematics and Its Applications, vol. 537. Kluwer, Dordrecht (2001)

    Google Scholar 

  12. Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  13. Heinzke, J., Steinbauer, R.: Remarks on the distributional Schwarzschild Geometry. gr-qc/0112047

  14. Hilbert, D.: Mathematische Probleme. Nachr. Ges. Wiss Gottingen Math. Phys. K1, 53 (1917)

    Google Scholar 

  15. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces. arXiv:1306.4979

  16. Kruskal, M.: Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Lee, B.-H., Yeom, D.-H.: Status report: black hole complementarity controversy. arXiv:1302.6006

  18. Manko, V.: On the properties of exact solutions endowed with negative mass. arXiv:1303.4337

  19. Nagy, S.: Lectures on renormalization and asymptotic safety. arXiv:1211.4151

  20. Niedermaier, M.: The asymptotic safety scenario in quantum gravity—an introduction. gr-qc/0610018

  21. Penrose, R.: The Road to Reality, A Complete Guide to the Laws of the Universe, pp. 836–837. Knopf Publisher, New York (2005)

    MATH  Google Scholar 

  22. Reuter, M., Saueressig, F.: Quantum Einstein gravity. arXiv:1202.2274

  23. Schwarzschild, K.: On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Berlin. Math. Phys. 1, 189 (1916); English translation by S. Antoci and A. Loinger can be found in physics/9905030

  24. Steinbauer, R., Vickers, J.: The use of generalized functions and distributions in General Relativity. gr-qc/0603078

  25. Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). arXiv:hep-th/9306069

    Article  ADS  MathSciNet  Google Scholar 

  26. Szekers, G.: On the singularities of a Riemannian manifold. Publ. Mat. Debreca 7, 285 (1960)

    Google Scholar 

  27. Thorne, K., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. 61, 1446 (1988)

    Google Scholar 

  28. Verlinde, E.: On the origin of gravity and the laws of Newton. JHEP 1104, 29 (2011)

  29. Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. AIP Press, Woodbury (1995)

    Google Scholar 

  30. Weyl, H.: Zur Gravitationstheorie. Ann. Phys. (Leipzig) 54, 117 (1917)

    Article  ADS  MATH  Google Scholar 

  31. Wikipedia. http://en.wikipedia.org/wiki/Firewall_(physics)

  32. Wikipedia. http://en.wikipedia.org/wiki/Heaviside_step_function

  33. Wikipedia. http://en.wikipedia.org/wiki/Sign_function

  34. Wolfram Mathworld. http://mathworld.wolfram.com/DeltaFunction.html

Download references

Acknowledgments

This work was sponsored by the Prometeo Project of the Secretary of Higher Education, Science, Technology and Innovation of the Republic of Ecuador. We are indebted to M. Bowers for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Castro Perelman.

Appendix: Schwarzschild-Like Solutions in \(D > 3 \)

Appendix: Schwarzschild-Like Solutions in \(D > 3 \)

In this Appendix we follow closely the calculations of the static spherically symmetric vacuum solutions to Einstein’s equations in any dimension \( D > 3\). Let us start with the line element with signature \( ( -, +, +, +, \ldots , +)\)

$$\begin{aligned} ds^{2}=-e^{\mu (r)}(dt )^{2}+e^{\nu (r)}(dr)^{2}+R^{2}(r)\tilde{g} _{ij}d\xi ^{i}d\xi ^j , \end{aligned}$$
(3.1)

where the areal radial function \( \rho ( r ) \) is now denoted by R ( r ) and which must not be confused with the scalar curvature \( \mathcal{R } \). Here, the metric \(\tilde{g}_{ij}\) corresponds to a homogeneous space and \( i,j=3,4,\ldots ,D-2\) and the temporal and radial indices are denoted by 1, 2 respectively. In our text we denoted the temporal index by 0 . The only non-vanishing Christoffel symbols are given in terms of the following partial derivatives with respect to the r variable and denoted with a prime

$$\begin{aligned} \begin{array}{llllll} \Gamma _{21}^{1}&{} =\frac{1}{2}\mu ^{\prime }, &{} \quad \Gamma _{22}^{2}&{} =\frac{1}{2} \nu ^{\prime }, &{} \quad \Gamma _{11}^{2}&{} =\frac{1}{2}\mu ^{ \prime }e^{\mu -\nu },\\ \Gamma _{ij}^{2}&{} =-e^{-\nu }RR^{\prime }\tilde{g}_{ij}, &{} \quad \Gamma _{2j}^{i}&{} = \frac{R^{\prime }}{R}\delta _{j}^{i}, &{} \quad \Gamma _{jk}^{i}&{} =\tilde{\Gamma } _{jk}^{i}, \end{array} \end{aligned}$$
(3.2)

and the only nonvanishing Riemann tensor are

$$\begin{aligned} \begin{array}{llll} \mathcal {R}_{212}^{1}&{}=-\frac{1}{2}\mu ^{\prime \prime }-\frac{1}{4}\mu ^{\prime 2}+\frac{1}{4}\nu ^{\prime }\mu ^{\prime }, &{}\quad \mathcal {R} _{i1j}^{1}&{}=-\frac{1}{2}\mu ^{\prime }e^{-\nu }RR^{\prime }\tilde{g}_{ij}, \\ \mathcal {R}_{121}^{2}&{}=e^{\mu -\nu }\left( \frac{1}{2}\mu ^{\prime \prime }+\frac{1 }{4}\mu ^{\prime 2}-\frac{1}{4}\nu ^{\prime }\mu ^{\prime }\right) , &{}\quad \mathcal {R }_{i2j}^{2}&{}=e^{-\nu }\left( \frac{1}{2}\nu ^{\prime }RR^{\prime }-RR^{\prime \prime }\right) \tilde{g}_{ij}, \\ \mathcal {R}_{jkl}^{i}&{}=\tilde{R}_{jkl}^{i}-R^{\prime 2}e^{-\nu }(\delta _{k}^{i}\tilde{g}_{jl}-\delta _{l}^{i}\tilde{g}_{jk}). &{} \end{array} \end{aligned}$$
(3.3)

The vacuum field equations are

$$\begin{aligned} \mathcal {R}_{11}=e^{\mu -\nu }\left( \frac{1}{2}\mu ^{\prime \prime }+\frac{1}{4} \mu ^{\prime 2}-\frac{1}{4}\mu ^{\prime }\nu ^{\prime }+\frac{(D-2)}{2}\mu ^{\prime }\frac{R^{\prime }}{R}\right) =0, \end{aligned}$$
(3.4)
$$\begin{aligned} \mathcal {R}_{22}=-\frac{1}{2}\mu ^{\prime \prime }-\frac{1}{4}\mu ^{\prime 2}+\frac{1}{4}\mu ^{\prime }\nu ^{\prime }+(D-2)\left( \frac{1}{2}\nu ^{\prime } \frac{R^{\prime }}{R}-\frac{R^{\prime \prime }}{R}\right) =0, \end{aligned}$$
(3.5)

and

$$\begin{aligned} \mathcal {R}_{ij}={ e^{-\nu }\over R^2 } \left( \frac{1}{2}(\nu ^{\prime }-\mu ^{\prime })RR^{\prime }-RR^{\prime \prime }-(D-3)R^{\prime 2}\right) \tilde{g}_{ij}+{k\over R^2} (D-3) \tilde{g}_{ij}=0,\nonumber \\ \end{aligned}$$
(3.6)

where \(k=\pm 1\), depending if \(\tilde{g}_{ij}\) refers to positive or negative curvature. From the combination \(e^{-\mu +\nu }\mathcal{R}_{11}+\mathcal{R}_{22}=0\) we get

$$\begin{aligned} \mu ^{\prime }+\nu ^{\prime }=\frac{2R^{\prime \prime }}{R^{\prime }}. \end{aligned}$$
(3.7)

The solution of this equation is

$$\begin{aligned} \mu +\nu ~=~\ln R^{\prime 2}~+~C, \end{aligned}$$
(3.8)

where C is an integration constant that one sets to zero if one wishes to recover the flat Minkowski spacetime metric in spherical coordinates in the asymptotic region \( r \rightarrow \infty \).

Substituting (3.7) into Eq. (3.6) we find

$$\begin{aligned} e^{-\nu }(\nu ^{\prime }RR^{\prime }-2RR^{\prime \prime }-(D-3)R^{\prime 2}) = -k(D-3) \end{aligned}$$
(3.9)

or

$$\begin{aligned} \gamma ^{\prime }RR^{\prime }+2\gamma RR^{\prime \prime }+(D-3)\gamma R^{\prime 2}=k(D-3), \end{aligned}$$
(3.10)

where

$$\begin{aligned} \gamma =e^{-\nu }. \end{aligned}$$
(3.11)

The solution of (3.10) for an ordinary D-dim spacetime (one temporal dimension) corresponding to a \(D-2\)-dim sphere for the homogeneous space can be written as

$$\begin{aligned} \gamma&= \left( 1 -\frac{ 16 \pi G_D M}{ ( D- 2) \Omega _{D - 2 } R^{D-3}}\right) \left( { \frac{ dR }{dr }}\right) ^{ -2}\\ \nonumber&\Rightarrow g_{rr} = e^\nu = \left( 1-\frac{ 16\pi G_D M}{ ( D- 2)\Omega _{D-2} R^{D-3}}\right) ^{ -1} \left( {\frac{dR}{dr}}\right) ^{2}, \end{aligned}$$
(3.12)

where \(\Omega _{D-2}\) is the appropriate solid angle in \(D -2\)-dim and \(G_D \) is the D-dim gravitational constant whose units are \((length)^{D-2}\). Thus \(G_D M \) has units of \((length)^{D - 3} \) as it should. When \(D = 4 \) as a result that the 2-dim solid angle is \(\Omega _2 = 4 \pi \) one recovers from Eq. (3.12) the 4-dim Schwarzchild solution. The solution in Eq. (3.12) is consistent with Gauss law and Poisson’s equation in \(D-1\) spatial dimensions obtained in the Newtonian limit.

For the most general case of the \(D -2\)-dim homogeneous space we should write

$$\begin{aligned} -\nu =\ln \left( k-\frac{\beta _D G_D M }{ R^{D-3}}\right) -2\ln R^{\prime }. \end{aligned}$$
(3.13)

\(\beta _D\) is a constant equal to \( 16\pi / ( D- 2) \Omega _{D-2} \), where \( \Omega _{D -2}\) is the solid angle in the \( D-2\) transverse dimensions to rt and is given by \( ( D - 1) \pi ^{ ( D - 1) / 2 } / \Gamma [ ( D + 1) / 2 ] \).

Thus, according to (3.8) we get

$$\begin{aligned} \mu =\ln \left( k-\frac{\beta _D G_D M }{ R^{D-3}}\right) + constant. \end{aligned}$$
(3.14)

we can set the constant to zero, and this means the line element (3.1) can be written as

$$\begin{aligned} ds^{2}= & {} -\left( k-\frac{\beta _D G_D M }{ R^{D-3}}\right) (dt)^{2} + \frac{ (dR/dr)^2 }{\left( k-\frac{\beta _D G_D M }{ R^{D-3}}\right) }(dr)^{2} + R^{2}(r)\tilde{g}_{ij}d\xi ^{i}d\xi ^j \nonumber \\= & {} -\left( k-\frac{\beta _D G_D M }{ R^{D-3}}\right) (dt)^{2} + \frac{ 1}{\left( k-\frac{\beta _D G_D M }{ R^{D-3}}\right) }(dR)^{2} +~ R^{2}(r)\tilde{g}_{ij}d\xi ^{i}d\xi ^j\nonumber \\ \end{aligned}$$
(3.15)

One can verify, that Eqs. (3.4)–(3.6), leading to Eqs. (3.9)–(3.10), do not determine the form R(r). It is also interesting to observe that the only effect of the homogeneous metric \({\tilde{g}}_{ij} \) is reflected in the \(k = \pm 1\) parameter, associated with a positive (negative) constant scalar curvature of the homogeneous \(D-2\)-dim space. \( k = 0 \) corresponds to a spatially flat \(D-2\)-dim section. The metric solution in Eq. (1.1) is associated to a different signature than the one chosen in this Appendix, and corresponds to \( D = 4 \) and \( k = 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perelman, C.C. Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy. Found Phys 46, 14–27 (2016). https://doi.org/10.1007/s10701-015-9954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9954-x

Keywords

Navigation