Skip to main content
Log in

Toward an Explanation of the Genesis of Ketamine-Induced Perceptual Distortions and Hallucinatory States

  • Published:
Brain and Mind

Abstract

The NMDA receptor (NMDAR) channel has been proposed to function as a coincidence-detection mechanism for afferent and reentrant signals, supporting conscious perception, learning, and memory formation. In this paper we discuss the genesis of distorted perceptual states induced by subanesthetic doses of ketamine, a well-known NMDA antagonist. NMDAR blockage has been suggested to perturb perceptual processing in sensory cortex, and also to decrease GABAergic inhibition in limbic areas (leading to an increase in dopamine excitability). We propose that perceptual distortions and hallucinations induced by ketamine blocking of NMDARs are generated by alternative signaling pathways, which include increase of excitability in frontal areas, and glutamate binding to AMPA in sensory cortex prompting Ca++ entry through voltage-dependent calcium channels (VDCCs). This mechanism supports the thesis that glutamate binding to AMPA and NMDARs at sensory cortex mediates most normal perception, while binding to AMPA and activating VDCCs mediates some types of altered perceptual states. We suggest that Ca++ metabolic activity in neurons at associative and sensory cortices is an important factor in the generation of both kinds of perceptual consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abi-Saab, W. M., D'Souza, D. C., Moghaddam, B. and Krystal, J. H., 1998: The NMDA antagonist model for schizophrenia: Promise and pitfalls, Pharmacopsychiatry 31(2), 104–109.

    Google Scholar 

  • Adams, B.W. and Moghaddam, B., 2001: Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex, Biol. Psychiatry. 50(10), 750–757.

    Google Scholar 

  • Aghajanian, G. K. and Marek, G. J., 2000: Serotonin model of schizophrenia: Emerging role of glutamate mechanisms, Brain Res. Brain Res. Rev. 31(2/3), 302–312.

    Google Scholar 

  • Anand, A., Charney, D. S., Oren, D. A., Berman, R. M., Hu, X. S., Cappiello, A. and Krystal, J. H., 2000: Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: Support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists, Arch. Gen. Psychiatry 57(3), 270–276.

    Google Scholar 

  • Baev, K. V., Greene, K. A., Marciano, F. F., Samanta, J. E., Shetter, A. G., Smith, K. A., Stacy, M. A. and Spetzler, R. F., 2002: Physiology and pathophysiology of cortico-basal ganglia-thalamocortical loops: Theoretical and practical aspects, Prog. Neuropsych. Biol. Psychiatry 26(4), 771–804.

    Google Scholar 

  • Baldwin, A. E., Sadeghian, K. and Kelley, A. E., 2002: Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex, J. Neurosci. 22(3), 1063–1071.

    Google Scholar 

  • Bliss, T. V. P. and Collingridge, G. L., 1993: A Synaptic Model of Memory: Long-term potentiation in the hippocampus, Nature 361, 31–39.

    Google Scholar 

  • Breese, G. R., Knapp, D. J. and Moy, S. S., 2002: Integrative role for serotonergic and glutamatergic receptor mechanisms in the action ofNMDAantagonists: Potential relationships to antipsychotic drug actions onNMDA antagonist responsiveness, Neurosc. Biobehav. Rev. 26, 441–454.

    Google Scholar 

  • Bulutcu, F., Dogrul, A. and Oguz, G. M., 2002: The involvement of nitric oxide in the analgesic effects of ketamine, Life Sciences 71(7), 841–853.

    Google Scholar 

  • Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H. and Gabrieli, J. D., 2001: Prefrontal regions involved in keeping information in and out of mind, Brain 124(10), 2074–2086.

    Google Scholar 

  • Cain, C., Blouin, A. and Barad, M., 2002: L-type voltage-gated calcium channels are required for extinction, but not for acquisition or expression, of conditional fear in mice, Jn. Neurosc. 22(20), 9113–9121.

    Google Scholar 

  • Chen, S. Y., Wu, W. C., Tseng, C. J., Kuo, J. S. and Chai, C. Y., 1997: Involvement of non-NMDA and NMDA receptors in glutamate-induced pressor or depressor responses of the pons and medulla, Clin. Exp. Pharmacol. Physiol. 24(1), 46–56.

    Google Scholar 

  • Czuczwar, S. J. and Patsalos, P. N., 2001: The new generation of GABA enhancers. Potential in the treatment of epilepsy, CNS Drugs 15(5), 339–350.

    Google Scholar 

  • Danysz,W., 2002: Positive modulators of AMPA receptors as a potential treatment for schizophrenia,Curr. Opin.Investig. Drugs3(7), 1062–1066.

    Google Scholar 

  • Davis, D.W., Mans, A. M., Biebuyck, J. F. and Hawkins, R. A., 1988: The influence of ketamine on regional brain glucose use, Anesthesiology 69, 199–205.

    Google Scholar 

  • Day, M., Olson, P. A., Platzer, J., Striessnig, J. and Surmeier, D. J., 2002: Stimulation of 5-HT(2) receptors in prefrontal pyramidal neurons inhibits Ca(v)1.2 L type Ca(2+) currents via a PLCbeta/IP3/calcineurin signaling cascade, J. Neurophysiol 87(5), 2490–2504.

    Google Scholar 

  • Devinsky, O., Morrell, M. J. and Vogt, B. A., 1995: Contributions of anterior cingulate cortex to behaviour, Brain 118(1), 279–306.

    Google Scholar 

  • Drukarch, B., Schepens, E. and Stoof, J. C., 1990: Muscarinic receptor activation attenuates D2 dopamine receptor mediated inhibition of acetylcholine release in rat striatum: Indications for a common signal transduction pathway, Neuroscience 37, 1–9.

    Google Scholar 

  • Duncan, G. E., Moy, S. S., Knapp, D. J., Mueller, R. A. and Breese, G. R., 1988: Metabolic mapping of the rat brain after subanesthetic doses of ketamine, Brain Res. 787(2), 181–190.

    Google Scholar 

  • Edelman, G. M., 1989: The Remembered Present: A Biological Theory of Consciousness, Basic Books, New York.

  • Eintrei, C., Sokoloff, L. and Smith, C. B., 1999: Effects of diazepam and ketamine administered individually or in combination on regional rates of glucose utilization in rat brain, Br. J. Anaesth. 82(4), 596–602.

    Google Scholar 

  • Epstein, J., Wiseman, C. V., Sunday, S. R., Klapper, F., Alkalay, L. and Halmi, K. A., 2001: Neurocognitive evidence favors "top down" over "bottom up" mechanisms in the pathogenesis of body size distortions in anorexia nervosa, Eat Weight Disord 6(3), 140–147.

    Google Scholar 

  • Everitt, B. J. and Robbins, T. W., 1997: Central cholinergic systems and cognition, Annu. Rev. Psychol. 48, 649–684.

    Google Scholar 

  • Farber, N. B., Newcomer, J. W. and Olney, J. W., 1998: The glutamate synapse in neuropsychiatric disorders: Focus on schizophrenia and Alzheimer' s disease, Prog. Brain Res. 116, 421–437.

    Google Scholar 

  • Farber, N. B. and Olney, J. W., 1999: Lamotrigine prevents NMDA antagonist neurotoxicity, Schizophr. Res. 36,308.

    Google Scholar 

  • Flohr, H., 1995: Sensations and brain processes, Behav. Brain Res. 71, 157–161.

    Google Scholar 

  • Goff, D. C. and Coyle, J. T., 2001: The emerging role of glutamate in the pathophysiology and treatment of schizophrenia, Am. J. Psychiatry 158(9), 1367–1377.

    Google Scholar 

  • Gray, J. A., 1995: The contents of consciousness:Aneuropsychological conjecture, Behavioral and Brain Sciences 18, 659–722.

    Google Scholar 

  • Grinspoon, L. and Bakalar, S. B., 1981: Psychedelic Drugs Reconsidered. Basic Books, New York.

  • Grossberg, S., 1999: The link between brain learning, attention and consciousness, Consc. Cognition 8(1), 1–44.

    Google Scholar 

  • Grossberg, S., 2000a: How hallucinations may arise from brain mechanisms of learning, attention and volition, J.Int. Neuropsychol. Soc. 6(5), 583–592.

    Google Scholar 

  • Grossberg, S., 2000b: The imbalanced brain: From normal behavior to schizophrenia, Biol. Psychiatry 48, 81–98.

    Google Scholar 

  • Hammer, R. P. and Herkenham, M., 1983: Altered metabolic activity in the cerebral cortex of rats exposed to ketamine, J. Comp. Neurol. 220(4), 396–404.

    Google Scholar 

  • Holcomb, H., Lahti, A., Medoff, D., Weiler, M. and Tamminga, C., 2001: Sequential regional cerebral blood flow brain scans using PET with H215O demonstrate ketamine actions in CNS dynamically, Neuropsychopharmacology 25(2), 165–172.

    Google Scholar 

  • James, W., 1890: The Principles of Psychology, authorized re-ed. 2 vols., Dover Publications, New York.

    Google Scholar 

  • Jansen, K. L. R., 2000: The ketamine model of the near death experience: A central role for the NMDA receptor. The New Lycaeum. http://leda.lycaeum.org/Documents/The Ketamine Model of the Near Death Experience.9264.shtml.

  • Jentsch, J. D. and Roth, R. H., 1999: The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia, Neuropsychopharmacology 20(3), 201–225.

    Google Scholar 

  • Kim, S. H., Price, M. T., Olney, J. W. and Farber, N. B., 1999: Excessive cerebrocortical release of acetylcholine induced byNMDA antagonists is reduced by GABAergic and alpha2-adrenergic agonists, Mol. Psychiatry 4(4), 344–352.

    Google Scholar 

  • Kitsikis, A. and Steriade, M., 1981: Immediate behavioral effects of kainic acid injections into the midbrain reticular core, Behav. Brain Res. 3(3), 361–380.

    Google Scholar 

  • Krupitsky, E. M., Burakov, A. M., Romanova, T. N., Grinenko, N. I., Grinenko, A. Y., Fletcher, J., Petrakis, I.L. and Krystal, J. H., 2001: Attenuation of ketamine effects by nimodipine pretreatment in recovering ethanol dependent men: Psychopharmacologic implications of the interaction of NMDA and L-type calcium channel antagonists, Neuropsychopharmacology 25(6), 936–947.

    Google Scholar 

  • Krystal, J. H., A nand, A. and Moghaddam, B., 2002: Effects of NMDA Receptor Antagonists: Implications for the Pathophysiology of Schizophrenia,Arch. Gen. Psychiatry 59(5), 466–467.

    Google Scholar 

  • Lahti, A. C., Holcomb, H. H., Gao, X. M. and Tamminga, C. A., 1999: NMDA-sensitive glutamate antagonism: A human model for psychosis, Neuropsychopharmacology 21(6), 158–169.

    Google Scholar 

  • Lahti, A. C., Koffel, B., LaPorte, D. and Tamminga, C. A., 1995: Subanesthetic doses of ketamine stimulate psychosis in schizophrenia, Neuropsychopharmacology 13(1), 9–19.

    Google Scholar 

  • Lahti, A. C., Weiler, M. A., Michaelides, T., Parwani, A. and Tamminga, C. A., 2001: Effects of ketamine in normal and schizophrenic volunteers, Neuropsychoparmacology 25(4), 455–467.

    Google Scholar 

  • Lehmann, J. and Langer, S. Z., 1983: The striatal cholinergic interneuron: Synaptic target of dopaminergic terminals? Neuroscience 10, 1105–1120.

    Google Scholar 

  • Lewis, D. A., Pierri, J. N., Volk, D.W., Melchitzky, D. S. and Woo, T. U., 1999: Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia, Biol. Psychiatry 46(5), 616–626.

    Google Scholar 

  • Lezcano, N. and Bergson, C., 2002: D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons, J. Neurophysiol. 87(4), 2167–2175.

    Google Scholar 

  • Lezcano, N., Mrzljak, L., Eubanks, S., Levenson, R., Goldman-Rakic, P. and Bergson, C., 2000: Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein, Science 287(5458), 1660–1664.

    Google Scholar 

  • Li, Q., Clark, S., Lewis, D. V. and Wilson, W. A., 2002: NMDA receptor antagonists disinhibit rat posterior cingulate and retrosplenial cortices: A potential mechanism of neurotoxicity, J.Neurosci. 22(8), 3070–3080.

    Google Scholar 

  • Manocha, A., Sharma, K. K. and Mediratta, P. K., 2001: Possible mechanism of anticonvulsant effect of ketamine in mice, Indian J. Exp. Biol. 39(10), 1002–1008.

    Google Scholar 

  • Mechri, A., Micallef, J., Blin, O., Saoud, M., Dalery, J. and Gaha, 2001a: Pharmacological modulation of the effects induced by ketamine at subanesthetic doses [Article in French], Therapie 56(5), 617–622.

    Google Scholar 

  • Mechri, A., Saoud, M., Khiari, G., d'Amato, T., Dalery, J. and G aha, L., 2001b: Glutaminergic hypothesis of schizophrenia: Clinical research studies with ketamine [Article in French], Encephale 27(1), 53–59.

    Google Scholar 

  • Moghaddam, B., Adams, B., Verma, A. and Daly, D., 1997: Activation of glutamatergic neurotransmission by ketamine:Anovel step in the pathway fromNMDAreceptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal Cortex, J. Neurosci. 17(8), 2921–2927.

    Google Scholar 

  • Molina, P. E. and Abumrad, N. N., 2001: Contribution of excitatory amino acids to hypoglycemic counterregulation, Brain Res. 899(1/2), 201–208.

    Google Scholar 

  • Mueller, R. A. and Hunt, R., 1998: Antagonism of ketamine-induced anesthesia by an inhibitor of nitric oxide synthesis: A pharmacokinetic explanation, Pharmacol. Biochem. Behav. 60(1), 15–22.

    Google Scholar 

  • Muir, K.W. and Lees, K. R., 1995: Clinical experience with excitatory amino acid antagonist drugs, Stroke 26(3), 503–513.

    Google Scholar 

  • Nelson, C. L., Burk, J. A., Bruno, J. P. and Sarter, M., 2002a: Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats, Psychopharmacology (Berl) 161(2), 168–179.

    Google Scholar 

  • Nelson, L. E., Guo, T. Z., Lu, J., Saper, C. B., Franks, N. P. and Maze, M., 2002b: The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway, Nat. Neurosci. 5(10), 979–984.

    Google Scholar 

  • Nelson, S. R., Howard, R. B., Cross, R. S. and Samson, F., 1980: Ketamine-induced changes in regional glucose utilization in the rat brain, Anesthesiology 52(4), 330–334.

    Google Scholar 

  • Newcomer, J.W., Farber, N. B., Jevtovic-Todorovic, V., Selke, G., Melson, A. K., Hershey, T., Craft, S. and Olney, J.W., 1999: Ketamine-inducedNMDA receptor hypofunction as a model of memory impairment and psychosis, Neuropsychopharmacology 20(2), 106–116.

    Google Scholar 

  • Nicholson, B., 2000: Gabapentin use in neuropathic pain syndromes, Acta. Neurol. Scand. 101(6), 359–371.

    Google Scholar 

  • Olney, J. W., Labruyere, J., Wang, G., Wozniak, D. F., Price, M. T. and Sesma, M. A., 1991: NMDA antagonist neurotoxicity: mechanism and prevention, Science 254(5037), 1515–1518.

    Google Scholar 

  • Olney, J.W., Newcomer, J.W. and Farber, N. B., 1999: NMDA receptor hypofunction model of schizophrenia, J.Psychiatr. Res. 33(6), 523–533.

    Google Scholar 

  • Olney, J. W., Newcomer, J. W. and Farber, N. B., 2002: Reply to Shim SS, Adityanjee. Is NMDA receptor hypofunction in schizophrenia associated with a primary hyperglutamatergic state? Arch. Gen. Psychiatry 59, 466–467.

    Google Scholar 

  • Oye, I., Paulsen, O. and Maurset, A., 1992: Effects of ketamine on sensory perception: Evidence for a role of N-methyl-D-aspartate receptors, J. Pharmacol. Exp. Ther. 260(3), 1209–1213.

    Google Scholar 

  • Patel, I. M. and Chapin, J. K., 1990: Ketamine effects on somatosensory cortical single neurons and on behavior in rats, Anesth. Analg. 70(6), 635–644.

    Google Scholar 

  • Paulig, M. and Mentrup, H., 2001: Treatment of Charles Bonnet Syndrome, J. Neurol. Neurosurg. Psychiatry 70(6), 813–841.

    Google Scholar 

  • Peters, A., Schweiger, U., Fruhwald-Schultes, B., Born, J. and Fehm, H. L., 2002: The neuroendocrine control of glucose allocation, Exp. Clin. Endocrinol. Diabetes 110(5), 199–211.

    Google Scholar 

  • Phillps, W. A. and Silverstein, S. M., in press: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia, Behav. Br. Sci.

  • Rahman, S. and McBride, W. J., 2002: Involvement of GABA and cholinergic receptors in the nucleus accumbens on feedback control of somatodendritic dopamine release in the ventral tegmental area, J. Neurochem. 80(4), 646–654.

    Google Scholar 

  • Riedel, G., Platt, B. and Micheau, J., 2003: Glutamate receptor function in learning and memory, Behav. Brain Res. 140, 1–47.

    Google Scholar 

  • Rocha, A. F., Pereira, Jr., A. and Coutinho, F. A., 2001: N-methyl-D-aspartate channel and consciousness: From signal coincidence detection to quantum computing, Prog. Neurobiol. 64(6), 555–573.

    Google Scholar 

  • Schneck, H. J. and Rupreht, J., 1989: Central anticholinergic syndrome (CAS) in anesthesia and intensive care,Acta. Anaesthesiol. Belg. 40(3), 219–228.

    Google Scholar 

  • Scott, L., Kruse, M. S., Forssberg, H., Brismar, H., Greengard, P. and Aperia, A., 2002: Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation, Proc. Natl. Acad. Sci. U.S.A. 5; 99(3), 1661–1664.

    Google Scholar 

  • Shanon, B., 2003: Hallucinations,J. Consci. Studies 10(2), 3–31.

    Google Scholar 

  • Stahl, S. M., 1996: Essential Psychopharmacology. Cambridge University Press, Cambridge/New York.

    Google Scholar 

  • Steriade, M., Pare, D., Datta, S., Oakson, G. and Curro, D. R., 1990: Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves, J. Neurosci. 10(8), 2560–2579.

    Google Scholar 

  • Stoof, J. C. and Kebabian, J.W., 1982: Independent in vitro regulation by the D-2 dopamine receptor of dopaminestimulated efflux of cyclic AMP and KC-stimulated release of acetylcholine from rat neostriatum, Brain Res. 250(2), 263–270.

    Google Scholar 

  • Svensson, A., Carlsson, M. L. and Carlsson, A., 1995: Crucial role of the accumbens nucleus in the neurotransmitter interactions regulating motor control in mice, J. Neural. Transm. Gen. Sect. 101(1/3), 127–148.

    Google Scholar 

  • Terreberry, R.R. and Neafsey, E. J., 1983: Rat medial frontal cortex:Avisceral motor region with a direct projection to the solitary nucleus, Brain Res. 14(278,1/2), 245–249.

    Google Scholar 

  • Tomitaka, S., Tomitaka, M., Tolliver, B. K. and Sharp, F. R., 2000: Bilateral blockade ofNMDAreceptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in rat retrosplenial cortex, Eur. J. Neurosci. 12(4), 1420–1430.

    Google Scholar 

  • Toro-Matos, A., Rendon-Platas, A. M., Avila-Valdez, E. and Villarreal-Guzman, R. A., 1980: Physostigmine antagonizes ketamine, Anesth. Analg. 59(10), 764–767.

    Google Scholar 

  • Vollenweider, F. X. and Geyer, M. A., 2001: A systems model of altered consciousness: integrating natural and drug-induced psychosis, Brain Res. Bull. 56(5), 495–507.

    Google Scholar 

  • Vollenweider, F. X., Leenders, K. L., Oye, I., Hell, D. and Angst, J., 1997: Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)-and (R)-ketamine in healthy volunteers using positron emission tomography (PET), Eur. Neuropsychopharmacol. 7(1), 25–38.

    Google Scholar 

  • Wang, J., Rong,W., Hou, G., Wang,W. and Yuan,W., 1998: Evidence thatNMDA receptors mediate the responses of putative RVLM presympathetic neurons to vagal afferent stimulation in rats, J. Auton. Nerv. Syst. 73(2/3), 93–100.

    Google Scholar 

  • Wang, J. and O'Donnell, P., 2001: D(1) dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons, Cereb. Cortex 11(5), 452–462.

    Google Scholar 

  • Yettefti, K., Orsini, J. C. and Perrin, J., 1997: Characteristics of glycemia-sensitive neurons in the nucleus tractus solitarii: Possible involvement in nutritional regulation, Physiol Behav. 61(1), 93–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A., Johnson, G. Toward an Explanation of the Genesis of Ketamine-Induced Perceptual Distortions and Hallucinatory States. Brain and Mind 4, 307–326 (2003). https://doi.org/10.1023/B:BRAM.0000005466.28582.27

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BRAM.0000005466.28582.27

Navigation