Skip to main content
Log in

The energy distribution for a spherically symmetric isolated system in general relativity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The problems of the tolal energy and quasilocalenergy density or an isolated spherically symmetric static system in general relativity (GR) are considered with examples of some exact suintions. The field formulation of GR dereloped earlier hy L. P. Grishchuk. el al. (1984). in ihe framework of which all the dynamical fields, including the gravitation field, are considered in a fixed background spacetime is used intensively. The exact Schwarzschild and Reissner Nordstrom solutions are investigated in detail, and the results are compared with those in the recent work by J. D. Brown and J. W. York. Jr. (1993) as well as discussed with respect to the principle of nonlocalization of the gravitational energy in GR. Those examples are illustrative and simple because the background is selected as Minkowski spacetime and, in fact, the field configurations are studied in the framework of special relativity. It is shown that some problems of the Schwarzschild solution which are difficult to resolve in the standard geometrical framework of GR are resolved in the framework of the field formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. W. Misner, K. S. Thorne, and J. A. Wheeler.Graritation (Freeman, San Francisco. 1973).

    Google Scholar 

  2. J. Katz and A. Ori.Class. Quantum Gravit. 7, 787 (1990).

    Google Scholar 

  3. J. D. Brown and J. W. York, Jr.,Phys. Rev. D 47. 1407 (1993).

    Google Scholar 

  4. J. W. Maluf.J. Math. Phys. 36, 4242 (1995).

    Google Scholar 

  5. D. Kennefick and N. O’Murchadha.Class. Quantum Gnravit. 12, 149 (1995).

    Google Scholar 

  6. K. Rosquist,Class. Quantum Gravit. 12, 1305 (1995).

    Google Scholar 

  7. J. V. Narlikr.Am. J. Phys. 62, 903 (1994).

    Google Scholar 

  8. K. K. Nandi and A. Islam.Am. J. Phys. 63, 251 (1995).

    Google Scholar 

  9. J. L. Synge,Relativity: The General Theory (North-Holland, Amsterdam, 1960).

    Google Scholar 

  10. L. P. Girishchuk. A. N. Petrov. and A. D. Popova.Commun. Math. Phys. 94. 379 (1984).

    Google Scholar 

  11. A. D. Popova and A. N. Petrov.Im. J. Mod. Phys. A 3, 2651 (1988).

    Google Scholar 

  12. A. N. Petrov.Class. Quantum Gravit. 10, 2663 (1993).

    Google Scholar 

  13. J. V. Narlikar. “Some conceptual problems in general relativity and cosmology.” in:A Random Walk in Relativity and Cosmology. N. Dadhich, J. Krishna Rao, J. V. Narlikar. and C. V. Vishevara. eds. (Wiley Eastern, New Delhi. 1985). pp. 171 183.

    Google Scholar 

  14. N. Dadhich, “How empty must empty space be” Report (The Third International Conference on Gravitation and Cosmology. Pune. India. December 13 19. 1995).

  15. L. D. Landau and E. M. Lifshitz.The Classical Theory of Fields (Pergamon. Oxford. 1975).

    Google Scholar 

  16. H. Bondi.Proc. Roy. Soc. London A 281, 39 (1964).

    Google Scholar 

  17. R. Schoen and S.-T. Yau.Common. Math. Phys. 65. 45 (1979):79, 231 (1981).

    Google Scholar 

  18. E. Witten,Commun. Math. Phys. 80, 381 (1981).

    Google Scholar 

  19. A. N. Petrov.Int. J. Mod. Phys. D 4, 451 (1995).

    Google Scholar 

  20. H. Balasin and H. Nachbagauer.Class. Quantum Gravit. 10, 2271 (1993).

    Google Scholar 

  21. T. Regge and C. Teitelboim.Ann. Phys. (N.Y.) 88. 286 (1974).

    Google Scholar 

  22. A. N. Petrov,Astronom. Astrophys. Trans. 1, 195 (1992).

    Google Scholar 

  23. P. S. Florides.Gen. Relat. Gravit. 26, 1145 (1994).

    Google Scholar 

  24. N. O’Murchadha.J. Math. Phys. 27, 2111 (1986).

    Google Scholar 

  25. A. N. Petrov. “On the weakest falloff conditions in the metric for an isolated system”. Preprint: IUCAA-32 95 (1995).

  26. J. Katz.Class. Quantum Gravit. 2, 423 (1985).

    Google Scholar 

  27. J. W. Maluf,J. Math. Phys. 35, 335 (1994).

    Google Scholar 

  28. J. Jezierski and J. Kijowski.Gen. Relat. Gravit. 22, 1283 (1990): J. M. Nester,Class. Quantum Gravit. 8, LI9 (1991): G. Bergqvist and M. Ludvigsen,Class. Quantum Gravit. 8, 697 (1991): A. J. Dugan and L. J. Mason.Phys. Rev. Lett. 67, 2119 (1991) S. Lau.Class. Quantum Gravit. 10, 2397 (1993): T. Shiromizu and M. Sugai,Class. Quantum Gravit. 11, L103 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, A.N., Narlikar, J.V. The energy distribution for a spherically symmetric isolated system in general relativity. Found Phys 26, 1201–1229 (1996). https://doi.org/10.1007/BF02275626

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02275626

Keywords

Navigation