Skip to main content
Log in

Transport Theory and Collective Modes. I. The Case of Moderately Dense Gases

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The complex spectral representation of the Liouville operator introduced by Prigogine and others is applied to moderately dense gases interacting through hard-core potentials in arbitrary d-dimensional spaces. Kinetic equations near equilibrium are constructed in each subspace as introduced in the spectral decomposition for collective, renormalized reduced distribution functions. Our renormalization is a nonequilibrium effect, as the renormalization effect disappears at equilibrium. It is remarkable that our renormalized functions strictly obey well-defined Markovian kinetic equations for all d, even though the ordinary distribution functions obey nonMarkovian equations with memory effects. One can now define transport coefficients associated to the collective modes for all dimensional systems including d = 2. Our formulation hence provides a microscopic meaning of the macroscopic transport theory. Moreover, this gives an answer to the long-standing question whether or not transport equations exist in two-dimensional systems. The non-Markovian effects for the ordinary distribution function, such as the long-time tails for arbitrary n-mode coupling, are estimated by superposition of the Markovian evolutions of the dressed distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. M. H. Ernst and J. R. Dorfman, Physica 61, 157 (1972).

    Google Scholar 

  2. M. H. Ernst and J. R. Dorfman, J. Stat. Phys. 12, 311 (1975).

    Google Scholar 

  3. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. A 6, 776 (1972); 12, 292 (1975).

    Google Scholar 

  4. Y. Pomeau and P. Résibois, Phys. Report 19C, 63 (1975).

    Google Scholar 

  5. M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. Van Leeuwen, Physica 45, 127 (1969).

    Google Scholar 

  6. P. Résibois and M. de Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  7. J. R. Dorfman and H. van Beijeren, in Statistical Mechanics, Part B, B. J. Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  8. J. R. Dorfman and T. Kirkpatrick, in Lecture Notes in Physics: Systems Far from Equilibrium-Proceedings, Sitges (Springer, New York, 1980), p. 263.

    Google Scholar 

  9. J. Van Leeuwen and A. Weyland, Physica 36, 457 (1967).

    Google Scholar 

  10. Y. Kan and J. R. Dorfman, Phys. Rev. A 16, 2447 (1977).

    Google Scholar 

  11. I. M. De Schepper and M. H. Ernst, Physica 87A, 35 (1975).

    Google Scholar 

  12. J. Piasecki, in Fundamental Problems in Statistical Mechanics, Vol. IV (Elsevier Science, Amsterdam, 1977).

    Google Scholar 

  13. M. Mareschal, Adv. Chem Phys. 100, 31 (1997).

    Google Scholar 

  14. I. Prigogine and P. Résibois, Physica 27, 629 (1961).

    Google Scholar 

  15. I. Prigogine, Non-Equilibrium Statistical Mechanics (Wiley Interscience, New York, 1962).

    Google Scholar 

  16. T. Petrosky and I. Prigogine, Chaos Solitons Fractals 7, 441 (1996).

    Article  Google Scholar 

  17. T. Petrosky and I. Prigogine, Adv. Chem. Phys. 99, 1 (1997).

    Google Scholar 

  18. M. Thedosopulu and A. P. Grecos, Physica 95A, 35 (1979).

    Google Scholar 

  19. T. Petrosky, Found. Phys. 29(10) (1999).

  20. R. Balescu, Statistical Mechanics of Charged Particles (Wiley Interscience, New York, 1963).

    Google Scholar 

  21. I. Prigogine and T. Petrosky, in Gravity, Particle and Space-Time, P. Pronin and G. Sardanashvily, eds. (World Scientific, Singapore, 1996), p. 51.

    Google Scholar 

  22. Z. Schchanecki, “Atomic vibrations in one dimensional lattices with quenched disordered phases: a rigorous approach,” to be published.

  23. P. A. Dirac, Lectures on Quantum Field Theory ( Belfer Graduate School, Yshiva University, New York, 1966).

    Google Scholar 

  24. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (1975).

  25. L. Kadanoff and J. Swift, Phys. Rev. 168, 89 (1968).

    Google Scholar 

  26. T. Petrosky, I. Prigogine, and S. Tasaki, Physica 173A, 175 (1991).

    Google Scholar 

  27. I. Antoniou and I. Prigogine, Physica 192A, 443 (1993).

    Google Scholar 

  28. H. H. Hasegawa and W. C. Saphir, Phys Rev. A 46, 7401 (1992).

    Google Scholar 

  29. I. Antoniou and S. Tasaki, J. Phys. A Math. Gen. 26, 73 (1993).

    Google Scholar 

  30. T. Petrosky and I. Prigogine, Physica 147A, 439 (1988).

    Google Scholar 

  31. A. Grecos, T. Guo, and W. Guo, Physica 80A, 421 (1975).

    Google Scholar 

  32. C. George, Bull. Classe Sci. Acad. Roy. Belg. 53, 623 (1967).

    Google Scholar 

  33. I. Prigogine, C. George, and F. Henin, Physica 45, 418 (1969).

    Google Scholar 

  34. T. Petrosky and H. Hasegawa, Physica 160A, 351 (1989).

    Google Scholar 

  35. B. Misra and I. Prigogine, Lett. Math. Phys. 7, 421 (1983).

    Google Scholar 

  36. Y. Pao, Commun. Pure Appl. Math. 27, 407 (1974).

    Google Scholar 

  37. T. Petrosky, in preparation.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrosky, T. Transport Theory and Collective Modes. I. The Case of Moderately Dense Gases. Foundations of Physics 29, 1417–1456 (1999). https://doi.org/10.1023/A:1018813310677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018813310677

Keywords

Navigation