Skip to main content
Log in

On the Form of Parametrized Gravitation in Flat Spacetime

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In a framework describing manifestly covariant relativistic evolution using a scalar time τ, consistency demands that τ-dependent fields be used. In recent work by the authors, general features of a classical parametrized theory of gravitation, paralleling general relativity where possible, were outlined. The existence of a preferred “time” coordinate τ changes the theory significantly. In particular, the Hamiltonian constraint for τ is removed From the Euler-Lagrange equations. Instead of the 5-dimensional stress-energy tensor, a tensor comprised of 4-momentum density mid flux density only serves as the source. Building on that foundation, in this paper we develop a linear approximate theory of parametrized gravitation in the spirit of the flat spacetime approach to general relativity. Using a modified form of Kraichnan's flat spacetime derivation of general relativity, we extend the linear theory to a family of nonlinear theories in which the flat metric and the gravitational field coalesce into a single effective curved metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. L. P. Horwitz and C. Piron, “Relativistic dynamics,” Helv. Phys. Acta 46, 316 (1973). See also J. R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  2. L. P. Horwitz, R. I. Arshansky, and A. C. Elitzur, “On the two aspects of time: The distinction and its implications,” Found. Phys. 18, 1159 (1988).

    Google Scholar 

  3. D. Saad, L. P. Horwitz, and R. I. Arshansky, “Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics,” Found Phys. 19, 1125 (1989).

    Google Scholar 

  4. L. P. Horwitz, “On the definition and evolution of states in relativistic classical and quantum mechanics,” Found Phys. 22, 421 (1992).

    Google Scholar 

  5. M. C. Land, N. Shnerb, and L. P. Horwitz, “On Feynman's approach to the foundations of gauge theory,” J. Math. Phys. 36, 3263 (1995).

    Google Scholar 

  6. N. Shnerb and L. P. Horwitz, “Canonical quantization of four-and five-dimensional U(1) gauge theories,” Phys. Rev. A 48, 4068 (1993).

    Google Scholar 

  7. M. C. Land, “Particles and events in classical off-shell electrodynamics,” Found Phys. 27, 19 (1997).

    Google Scholar 

  8. M. C. Land and L. P. Horwitz, “The Lorentz force and energy-momentum for off-shell electromagnetism,” Found. Phys. Lett. 4, 61 (1991).

    Google Scholar 

  9. J. B. Pitts and W. C. Schieve, “On parametrized general relativity,” Found. Phys. 28, 1417 (1998).

    Google Scholar 

  10. R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).

    Google Scholar 

  11. C. Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman, New York, 1973).

    Google Scholar 

  12. M. Pavsic, “On the resolution of time problem in quantum gravity induced from unconstrained membranes,” Found. Phys. 26, 159 (1996).

    Google Scholar 

  13. A. Papapetrou, “Einstein's theory of gravitation and flat space,” Proc. R. Ir. Acad. A 52, 11 (1948).

    Google Scholar 

  14. S. Gupta, “Gravitation and electromagnetism,” Phys. Rev. 96, 1683 (1954).

    Google Scholar 

  15. R. H. Kraichnan, “Special relativistic derivation of generally covariant theory,” Phys. Rev. 98, 1118 (1955).

    Google Scholar 

  16. W. E. Thirring, “An alternative approach to the theory of gravitation,” Ann. Phys. (NY) 16, 96 (1961).

    Google Scholar 

  17. L. Halpern, “On the structure of the gravitation self-interaction,” Bull. Cl. Sci. Acad R. Belg., 5e série, 49, 226 (1963).

    Google Scholar 

  18. S. Deser, “Self-interaction and gauge invariance,” Gen. Rel. Gravit. 1, 9 (1970).

    Google Scholar 

  19. R. P. Feynman, F. B. Morinigo, and W. G. Wagner, Feynman Lectures on Gravitation, B. Hatfield, ed. (Addison-Wesley, Reading, Mass., 1995).

    Google Scholar 

  20. N. Rosen, “General Relativity and flat space. I and II,” Phys. Rev. 57, 147 (1940). Also, N. Rosen, “Flat-space metric in general relativity theory,” Ann. Phys. (NY) 22, 1 (1963).

    Google Scholar 

  21. W. G. Unruh, “Unimodular theory of canonical quantum gravity,” Phys. Rev. D 40, 1048 (1989).

    Google Scholar 

  22. M. C. Land and L. P. Horwitz, “Green's functions for off-shell electromagnetism and spacelike correlations,” Found. Phys. 21, 299 (1991).

    Google Scholar 

  23. C. Will, Theory and Experiment in Gravitational Physics, rev. edn. (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  24. H. Ohanian and R. Ruffini, Gravitation and Spacetime, 2nd edn. (Norton, New York, 1994).

    Google Scholar 

  25. J. L. Anderson, Principles of Relativity Physics (Academic, New York, 1967).

    Google Scholar 

  26. S. V. Babak and L. P. Grishchuk, “The Energy-momentum tensor for the gravitational field,” Phys. Rev. D 61, 024038 (2000).

    Google Scholar 

  27. W. Israel, Differential Forms in General Relativity, 2nd edn. (Dublin Institute for Advanced Studies, Dublin, 1979).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitts, J.B., Schieve, W.C. On the Form of Parametrized Gravitation in Flat Spacetime. Foundations of Physics 29, 1977–1985 (1999). https://doi.org/10.1023/A:1018802719705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018802719705

Keywords

Navigation