Skip to main content
Log in

Phase Space Optimization of Quantum Representations: Non-Cartesian Coordinate Spaces

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In an earlier article [Found. Phys. 30, 1191 (2000)], a quasiclassical phase space approximation for quantum projection operators was presented, whose accuracy increases in the limit of large basis size (projection subspace dimensionality). In a second paper [J. Chem. Phys. 111, 4869 (1999)], this approximation was used to generate a nearly optimal direct-product basis for representing an arbitrary (Cartesian) quantum Hamiltonian, within a given energy range of interest. From a few reduced-dimensional integrals, the method determines the optimal 1D marginal Hamiltonians, whose eigenstates comprise the direct-product basis. In the present paper, this phase space optimized direct-product basis method is generalized to incorporate non-Cartesian coordinate spaces, composed of radii and angles, that arise in molecular applications. Analytical results are presented for certain standard systems, including rigid rotors, and three-body vibrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Bowman, Acc. Chem. Res. 19,202 (1986).

    Google Scholar 

  2. Z. BačIć and J. C. Light, Annu. Rev. Phys. Chem. 40, 469 (1989).

    Google Scholar 

  3. R. Baer and M. Head-Gordon, Phys. Rev. Lett. 79, 3962 (1997).

    Google Scholar 

  4. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).

    Google Scholar 

  5. B. Poirier, Phys. Rev. A 56, 120 (1997).

    Google Scholar 

  6. B. Poirier and J. C. Light, J. Chem. Phys. 111, 4869 (1999).

    Google Scholar 

  7. D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J. Chem. Phys. 43, 1515 (1965).

    Google Scholar 

  8. A. S. Dickinson and P. R. Certain, J. Chem. Phys. 49, 4209 (1968).

    Google Scholar 

  9. J. C. Light, R. M. Whitnell, T. J. Park, and S. E. Choi, in Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules, A. Lagana, ed. (Kluwer Academic, Boston, 1989), pp. 187–214.

    Google Scholar 

  10. D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).

    Google Scholar 

  11. J. Echave and D. C. Clary, Chem. Phys. Lett. 190, 225 (1992).

    Google Scholar 

  12. H. Wei and T. Carrington, Jr., J. Chem. Phys. 97, 3029 (1992).

    Google Scholar 

  13. B. Poirier, Found. Phys. 30, 1191 (2000).

    Google Scholar 

  14. N. Bohr, Phil. Mag. (Series 6) 26, 857(1913).

    Google Scholar 

  15. W. Wilson, Phil. Mag. 29, 795 (1915).

    Google Scholar 

  16. A. Sommerfeld, Ann. Phys. (Leipzig) 51, 1 (1916).

    Google Scholar 

  17. E. Fattal, R. Baer, and R. Kosloff, Phys. Rev. E. 53, 1217(1996).

    Google Scholar 

  18. D. W. Noid and R. A. Marcus, J. Chem. Phys. 62, 2119 (1976).

    Google Scholar 

  19. M. J. Davis and E. J. Heller, J. Chem. Phys. 71, 3383 (1979).

    Google Scholar 

  20. I. P. Hamilton and J. C. Light, J. Chem. Phys. 84, 306 (1986).

    Google Scholar 

  21. B. Poirier and J. C. Light, J. Chem. Phys. 114, 6562 (2001).

    Google Scholar 

  22. C. Eckart, Phys. Rev. 46, 383 (1934).

    Google Scholar 

  23. R. T. Pack, in Advances in Molecular Vibrations and Collision Dynamics, Vol. 2A (JAI Press Inc., New York, NY, 1994), pp. 111–145.

    Google Scholar 

  24. R. G. Littlejohn and M. Reinsch, Rev. Mod. Phys. 69, 213 (1997).

    Google Scholar 

  25. A. N. Kolmogorov and S. V. Fomin, in Introductory Real Analysis, Chap. 3 (Dover Publications, New York, NY, 1975), pp. 78–117.

    Google Scholar 

  26. H. Weyl, Z. Phys. 46, 1 (1928).

    Google Scholar 

  27. E. Wigner, Phys. Rev. 40, 749 (1932).

    Google Scholar 

  28. J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

    Google Scholar 

  29. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).

    Google Scholar 

  30. J. J. Morehead, J. Math. Phys. 36, 5431 (1995).

    Google Scholar 

  31. B. Poirier, J. Math. Phys. 40, 6302 (1999).

    Google Scholar 

  32. B. Lesche and T. H. Seligman, J. Phys. A: Math. Gen. 19, 91 (1986).

    Google Scholar 

  33. B. Podolsky, Phys. Rev. 32, 812 (1928).

    Google Scholar 

  34. M. M. Nieto, Phys. Rev. A 17, 1273 (1978).

    Google Scholar 

  35. J. Dai and J. C. Light, J. Chem. Phys. 107, 8432 (1997).

    Google Scholar 

  36. H. Goldstein, Classical Mechanics, 2nd edn. (Addison–Wesley, Reading, MA, 1980).

    Google Scholar 

  37. D. J. Evans, Mol. Phys. 34, 317 (1977).

    Google Scholar 

  38. M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

    Google Scholar 

  39. B. Poirier, J. Chem. Phys. 108, 5216 (1998). 1610 Poirier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poirier, B. Phase Space Optimization of Quantum Representations: Non-Cartesian Coordinate Spaces. Foundations of Physics 31, 1581–1610 (2001). https://doi.org/10.1023/A:1012642832253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012642832253

Keywords

Navigation