Skip to main content
Log in

On Vacuum Fluctuations and Particle Masses

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The idea that the mass m of an elementary particle is explained in the semi-classical approximation by quantum-mechanical zero-point vacuum fluctuations has been applied previously to spin-1/2 fermions to yield a real and positive constant value for m, expressed through the spinorial connection Γ i in the curved-space Dirac equation for the wave function ψ due to Fock. This conjecture is extended here to bosonic particles of spin 0 and spin 1, starting from the basic assumption that all fundamental fields must be conformally invariant. As a result, in curved space-time there is an effective scalar mass-squared term \(m_{0}^{2}=-R/6=2\varLambda_{\mathrm{b}}/3\), where R is the Ricci scalar and Λ b is the cosmological constant, corresponding to the bosonic zero-point energy-density, which is positive, implying a real and positive constant value for m 0, through the positive-energy theorem. The Maxwell Lagrangian density \(\mathcal{L} =- \sqrt{-g}F_{ij}F^{ij}/4\) for the Abelian vector field F ij A j,i A i,j is conformally invariant without modification, however, and the equation of motion for the four-vector potential A i contains no mass-like term in curved space. Therefore, according to our hypothesis, the free photon field A i must be massless, in agreement with both terrestrial experiment and the notion of gauge invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fock, V.: Z. Phys. 39, 226 (1926)

    Article  ADS  MATH  Google Scholar 

  2. Weyl, H.: Z. Phys. 56, 330 (1929)

    Article  ADS  MATH  Google Scholar 

  3. Ginzburg, V.L., Landau, L.D.: Zh. Èksp. Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  4. Okun, L.B.: Int. J. Mod. Phys. A 17(Suppl.), 105 (2002)

    ADS  MATH  Google Scholar 

  5. Proca, A.: J. Phys. Radium Sér. 7 7, 347 (1936)

    MATH  Google Scholar 

  6. Schrödinger, E.: Proc. R. Ir. Acad. A 48, 135 (1943)

    MATH  Google Scholar 

  7. Bass, L., Schrödinger, E.: Proc. R. Soc. Lond. A 232, 1 (1955)

    Article  ADS  MATH  Google Scholar 

  8. Debye, P., Hückel, E.: Phys. Z. 24, 185 (1923)

    MATH  Google Scholar 

  9. London, F.: Act. Sci. Ind. No. 458, 15. Paris (1937)

  10. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, Vols. 1, 2. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  11. Green, M.B.: Nature 314, 409 (1985)

    Article  ADS  Google Scholar 

  12. Pollock, M.D.: Acta Phys. Pol. B 41, 779 (2010)

    MathSciNet  Google Scholar 

  13. Fock, V.: Z. Phys. 57, 261 (1929)

    Article  ADS  MATH  Google Scholar 

  14. Dolgov, A.D., Zel’dovich, Ya.B.: Rev. Mod. Phys. 53, 1 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  15. Zel’dovich, Ya.B.: Usp. Fiz. Nauk 95, 209 (1968) [Sov. Phys. Usp. 11, 381 (1968)]

    Google Scholar 

  16. Nordström, G.: Proc. Kon. Akad. Wet. Amst. 20, 1076 (1918)

    Google Scholar 

  17. Tolman, R.C.: Relativity, Thermodynamics and Cosmology. Clarendon Press, Oxford (1934)

    Google Scholar 

  18. Taub, A.H.: Phys. Rev. 51, 512 (1937)

    Article  ADS  Google Scholar 

  19. Pollock, M.D.: Int. J. Mod. Phys. A 21, 373 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  20. Arnowitt, R., Deser, S., Misner, C.W.: In: Witten, L. (ed.) Gravitation, an Introduction to Current Research, p. 227. Wiley, New York (1962)

    Google Scholar 

  21. Schoen, R., Yau, S.-T.: Commun. Math. Phys. 65, 45 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Schoen, R., Yau, S.-T.: Commun. Math. Phys. 79, 231 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Witten, E.: Commun. Math. Phys. 80, 381 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  24. Pollock, M.D.: Acta Phys. Pol. B 39, 35 (2008)

    MathSciNet  ADS  Google Scholar 

  25. Pollock, M.D.: Acta Phys. Pol. B 41, 1827 (2010)

    MathSciNet  Google Scholar 

  26. Schrödinger, E.: Sitz. Preuss. Akad. Wiss. Berlin 105 (1932)

  27. Pauli, W. Jr.: Z. Phys. 43, 601 (1927)

    Article  ADS  MATH  Google Scholar 

  28. Touschek, B.F.: Nuovo Cimento 5, 754 (1957)

    Article  MathSciNet  Google Scholar 

  29. Touschek, B.F.: Nuovo Cimento 5, 1281 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dirac, P.A.M.: Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  MATH  Google Scholar 

  31. Dirac, P.A.M.: Proc. R. Soc. Lond. A 118, 351 (1928)

    Article  ADS  MATH  Google Scholar 

  32. Bargmann, V.: Sitz. Preuss. Akad. Wiss. Berlin 346 (1932)

  33. Parker, L.: Phys. Rev. D 22, 1922 (1980)

    Article  ADS  Google Scholar 

  34. Cunningham, E.: Proc. Lond. Math. Soc. 8, 77 (1910)

    Article  MathSciNet  Google Scholar 

  35. Bateman, H.: Proc. Lond. Math. Soc. 8, 223 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weyl, H.: Sitz. Preuss. Akad. Wiss. Berlin 465 (1918)

  37. Weyl, H.: Math. Z. 2, 384 (1918)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dirac, P.A.M.: Ann. Math. 37, 429 (1936)

    Article  MathSciNet  Google Scholar 

  39. Bhaba, H.J.: Proc. Camb. Philos. Soc. 32, 622 (1936)

    Article  ADS  Google Scholar 

  40. Pauli, W.: Helv. Phys. Acta 13, 204 (1940)

    MathSciNet  Google Scholar 

  41. Einstein, A.: Sitz. Preuss. Akad. Wiss. Berlin 261 (1921)

  42. Penrose, R.: In: DeWitt, C., DeWitt, B. (eds.) Relativity, Groups and Topology, p. 563. Gordon and Breach, London (1964)

    Google Scholar 

  43. Chernikov, N.A., Tagirov, E.A.: Ann. Inst. H. Poincaré 9A, 109 (1968)

    MathSciNet  Google Scholar 

  44. Pollock, M.D.: Int. J. Mod. Phys. D 16, 591 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Kobzarev, I.Yu., Okun’, L.B.: Usp. Fiz. Nauk 95, 131 (1968) [Sov. Phys. Usp. 11, 338 (1968)]

    Google Scholar 

  46. Amsler, C., et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  47. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  48. Ignatiev, A., Joshi, G.: Phys. Rev. D 53, 984 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  49. Accioly, A., et al.: Class. Quantum Gravity 27, 205010 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  50. von Weyssenhoff, J.: Z. Phys. 95, 391 (1935)

    Article  ADS  Google Scholar 

  51. von Weyssenhoff, J.: Z. Phys. 107, 64 (1937)

    Article  ADS  Google Scholar 

  52. Yamaguchi, Y.: Prog. Theor. Phys. Suppl. 11, 1 (1959)

    Article  ADS  Google Scholar 

  53. Heisenberg, W., Pauli, W.: Z. Phys. 56, 1 (1929)

    Article  ADS  MATH  Google Scholar 

  54. Heisenberg, W., Pauli, W.: Z. Phys. 59, 168 (1929)

    ADS  Google Scholar 

  55. Fermi, E.: Atti R. Accad. Naz. Lincei. Ser. 6 9, 881 (1929)

    MATH  Google Scholar 

  56. Meissner, W., Ochsenfeld, R.: Naturwissenshaften 21, 787 (1933)

    Article  ADS  Google Scholar 

  57. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 106, 162 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  58. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Gor’kov, L.P.: Zh. Èksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys. JETP 9, 1364 (1959)]

    Google Scholar 

  60. Gor’kov, L.P.: Zh. Èksp. Teor. Fiz. 37, 1407 (1959) [Sov. Phys. JETP 10, 998 (1960)]

    MathSciNet  Google Scholar 

  61. Landau, L.: Zh. Èksp. Teor. Fiz. 7, 19 (1937)

    Google Scholar 

  62. Landau, L.: Zh. Èksp. Teor. Fiz. 7, 627 (1937)

    Google Scholar 

  63. Landau, L.: Phys. Z. Sowjetunion 11, 26 (1937)

    MATH  Google Scholar 

  64. Landau, L.: Phys. Z. Sowjetunion 11, 545 (1937)

    MATH  Google Scholar 

  65. Zel’manov, A.L.: Dokl. Akad. Nauk SSSR 107, 815 (1956) [Sov. Phys. Dokl. 1, 227 (1956)]

    MathSciNet  Google Scholar 

  66. Landau, L.D., Lifschitz, E.M.: Statistical Physics. Pergamon Press, Oxford (1958)

    MATH  Google Scholar 

  67. Cooper, L.N.: Phys. Rev. 104, 1189 (1956)

    Article  ADS  MATH  Google Scholar 

  68. Anderson, P.W.: Phys. Rev. 110, 985(L) (1958)

    ADS  Google Scholar 

  69. Anderson, P.W.: Phys. Rev. 130, 439 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This paper was written at the University of Cambridge, Cambridge, England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Pollock.

Appendix: The Fermi Lagrangian of Electromagnetism

Appendix: The Fermi Lagrangian of Electromagnetism

The Lagrangian density of the electromagnetic field

$$ \mathcal{L}=-\frac{1}{4}\sqrt{-g}F_{ij}F^{ij} $$
(156)

can be rewritten in Minkowski space-time, where \(\sqrt{-g}=1\) and covariant derivatives reduce to partial derivatives, as

$$ \mathcal{L}=\frac{1}{2}(A_{j,i}-A_{i,j})A^{i,j}=\mathcal {L}_\mathrm{F}+ \frac{1}{2}\bigl(A_{j}A^{i,j}\bigr)_{,i}-\frac{1}{2}A_j \bigl(A^{i}_{,i}\bigr)^{,j}, $$
(157)

where the Fermi Lagrangian is defined by

$$ \mathcal{L}_\mathrm{F}=-\frac{1}{2}A_{i,j}A^{i,j}. $$
(158)

Thus, expression (157) differs from \(\mathcal{L}_{\mathrm{F}}\) only by a total divergence, if the Lorenz gauge condition (104) is imposed, which is guaranteed by the condition (110). Expression (158) implies a non-vanishing canonical momentum

$$ \pi_0=\partial\mathcal{L}/\partial \bigl(\partial_0 A^0\bigr), $$
(159)

allowing construction of the Hamiltonian.

There is no obvious way of generalizing this procedure to curved space-time, however. For the covariant form of Eq. (158) is

$$ \mathcal{L}_\mathrm{F}=-\frac{1}{2}\sqrt{-g}A_{i;j}A^{i;j}, $$
(160)

and therefore we have to rewrite Eq. (156) as

$$ \mathcal{L}=\frac{1}{2}\sqrt{-g}(A_{j;i}-A_{i;j})A^{i;j} = -\frac{1}{2}\sqrt{-g}A_{i;j}A^{i;j} +\frac{1}{2}\sqrt{-g}A_{j;i}A^{i;j}. $$
(161)

The first term on the right-hand side of Eq. (161) is expression (160), but the second term cannot be expressed as the difference of the total divergence \(\frac{1}{2}(\sqrt{-g}A_{j}A^{i;j})_{,i}\) and the product of A j times the jth derivative of \(A^{i}_{;i}\), in particular because \(A^{i;j}_{;i}\neq A_{;i}^{i;j}\). Nor is any meaningful simplification achieved by imposing a metric gauge condition, for example, the de Donder–Lanczos condition

$$ \bigl(\sqrt{-g}g^{ij}\bigr)_{,j}=0, $$
(162)

in addition to the electromagnetic gauge condition (104), due to the fact that expression (160) contains a term which is quadratic in both \(\varGamma^{i}_{jk}\) and A i .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, M.D. On Vacuum Fluctuations and Particle Masses. Found Phys 42, 1300–1328 (2012). https://doi.org/10.1007/s10701-012-9668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9668-2

Keywords

Navigation