Skip to main content
Log in

Ptykes in GödelsT und Definierbarkeit von Ordinalzahlen

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Summary

We prove two of the inequalities needed to obtain the following result on the ordinal values of ptykes of type 2, which are definable in Gödel'sT. LetG be a dilator satisfyingG(0)=ω, ∀x:G(x)≧x, and ∀η<Ω:G(η)<Ω, and letg be the ordinal function induced byG. Then sup{A(G)A ptyx of type 2 definable in Gödel'sT} = sup{xx is g1 -definable without parameters provably in KP(G)} =J g(2 +Id) (ω) (0) = the “Bachmann-Howard ordinal relative tog”. KP(G) is obtained from Kripke-Platek set theory without urelements KP by adjoining a two-place relation symbolG and axioms expressing thatG is the graph of a total function from ordinals to ordinals.J g D is an iteration hierarchy defined relative tog by primitive recursion on dilators. (2 +Id)(ω) is the dilator\(\mathop {\sup }\limits_{n< \omega } (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} + Id)_{(n)} \) with (2 +Id)(0)1 and\((\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} + Id)_{(n + 1)} : = (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} + Id)^{(2 + Id)_{(n)} } \). The “Bachmann-Howard ordinal relative tog” is the closure ordinal of a Bachmann hierarchy of lengthε Ω + 1, which is built on an iteration ofg as initial function.

For the caseG=(1+Idω, KP(G) is equivalent to Jäger's theory KPu, and the “Bachmann-Howard ordinal relative tog” is the usual “Bachmann-Howard ordinal”. For the caseG1 KP(G) can be replaced by Jäger's theory KPi, andg can be replaced by the functionλx. x +.x + is the successor admissible ofx, andΞ 1 is the sum of all recursive dilators in an arbitrary enumeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aczel, P.: Describing ordinals using functionals of transfinite type. JSL37, 35–47 (1972)

    Google Scholar 

  2. Barwise, J.: Admissible sets and structures. An approach to definability theory. Berlin Heidelberg New York: Springer 1975

    Google Scholar 

  3. Buchholz, W., Schütte, K.: Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung derΠ 12 -Separation und Bar-Induktion. Bayer. Akad. Wiss. Math.-Naturwiss. Kl. Sitzungsber.1983, 99–132 (1984)

    Google Scholar 

  4. Feferman, S.: Ordinals associated with theories for one inductively defined set (preliminary version). Hektographiertes Manuskript eines Beitrags zur Summer Conference at Buffalo N.Y. 1968

  5. Feferman, S.: Hereditarily replete functionals over the ordinals. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and proof theory. Proceedings of the Summer Conference at Buffalo N.Y. 1968, pp. 289–301. Amsterdam London: North-Holland 1970

    Google Scholar 

  6. Girard, J.-Y.: Functionals and ordinoids. In: Colloques internationaux du CNRS: Colloque international de logique.249, 59–71 (1975)

    Google Scholar 

  7. Girard, J.-Y.: Proof theory and logical complexity, wird erscheinen in Ed. Bibliopolis, Napoli

  8. Girard, J.-Y., Ressayre, J.P.: Elements de logiqueΠ 1n . In: Nerode, A., Shore, R.A. (eds.) Recursion theory. Proc. Sympos. Pure Math.42, 389–445 (1985)

  9. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica12, 280–287 (1958)

    Google Scholar 

  10. Hinman, P.G.: Recursion-theoretic hierarchies. Berlin Heidelberg New York: Springer 1978

    Google Scholar 

  11. Howard, W.A.: Transfinite induction and transfinite recursion. In: Stanford report on the foundations of analysis, sec. VI, Vol.2, pp. 207–262, Stanford University 1963

  12. Howard, W.A.: Hereditarily majorizable functionals of finite type. In: Troelstra, A.S.: Metamathematical investigation of intuitionistic arithmetic and analysis (Lect. Notes Math., vol. 344, pp. 454–461, Appendix) Berlin Heidelberg New York: Springer 1973

    Google Scholar 

  13. Jäger, G.: Some proof-theoretic contributions to theories of sets. In: The Paris Logic Group (ed.) Logic Colloquium '85. Proceedings of the Colloquium held in Orsay, France, July 1985, pp. 171–191. Amsterdam New York Oxford Tokyo: North-Holland 1987

    Google Scholar 

  14. Jäger, G., Pohlers, W.: Eine beweistheoretische Untersuchung von (Δ 12 CA)+(BI) und verwandter Systeme. Bayer. Akad. Wiss. Math.-Naturwiss. Kl. Sitzungsber.1982, 1–28 (1982)

    Google Scholar 

  15. Jensen, R.B., Karp, C: Primitive recursive set functions. In: Scott, D.S. (ed.) Axiomatic set theory. Proc. Sympos. Pure Math.,13 (I), 143–176, (1971)

  16. Päppinghaus, P.: A typedλ-calculus and Girard's model of ptykes. In: Dorn, G., Weingartner, P. (eds.) Foundations of logic and linguistics:problems and their solutions, pp. 245–279. New York London: Plenum Press 1985

    Google Scholar 

  17. Päppinghaus, P.: Ptykes in GödelsT und Verallgemeinerte Rekursion über Mengen und Ordinalzahlen. Habilitationsschrift. Universität Hannover 1985

  18. Päppinghaus, P.:Π 2-models of extensions of Kripke-Platek set theory. In: The Paris Logic Group (ed.) Logic Colloquium '85. Proceedings of the Colloquium held in Orsay, France, July 1985, pp. 213–232. Amsterdam New York Oxford Tokyo: North-Holland 1987

    Google Scholar 

  19. Päppinghaus, P.: Rekursion über Dilatoren und die Bachmann-Hierarchie. Arch. Math. Logic28, 57–73

  20. Pfeiffer, H.: Ein abstraktes Ordinalzahlbezeichnungssystem mit einem Zeichen für die kleinste schwach unerreichbare Ordinalzahl. Institut für Mathematik, Universität Hannover, Nr. 155, 1983

  21. Ressayre, J.P.: Bounding generalized recursive functions of ordinals by effective functors; a complement to the Girard theorem. In: Stern, J. (ed.) Proceedings of the Herbrand Symposium. Logic Colloquium '81, pp. 251–279. Amsterdam New York Oxford: North-Holland 1982

    Google Scholar 

  22. Richter, W., Aczel, P.: Inductive definitions and reflecting properties of admissible ordinals. In: Fenstad, J.E. Hinman, P.G. (eds.) Generalized recursion theory. Proceedings of the 1972 Oslo Symposium, pp. 301–381. Amsterdam London New York: North-Holland 1974

    Google Scholar 

  23. Troelstra, A.S.: Metamathematical investigation of intuitionistic arithmetic and analysis (Lect. Notes Math., vol.344) Berlin Heidelberg New York: Springer 1973

    Google Scholar 

  24. Vogel, H.: Über die mit dem Bar-Rekursor vom Typ 0 definierbaren Ordinalzahlen. Arch. Math. Logik19, 165–173 (1978)

    Google Scholar 

  25. Weyhrauch, R.W.: Relations between some hierarchies of ordinal functions and functionals. Thesis, Stanford University 1972

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Päppinghaus, P. Ptykes in GödelsT und Definierbarkeit von Ordinalzahlen. Arch Math Logic 28, 119–141 (1989). https://doi.org/10.1007/BF01633986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01633986

Navigation