Skip to main content
Log in

The systems-theoretical view of chemical concepts

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

While the principal ideas of a systems theory for the molecular sciences have been introduced in part I (Reiher, 2003), illustrative examples for the ingredients of this systems chemistry are discussed in greater detail in this work. The potential wealth of systems chemistry is then demonstrated for a recently developed approach for the calculation of hydrogen bond energies in non-decomposable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Oxford: Oxford Science Publications, 1989.

    Google Scholar 

  • S.M. Bachrach. Population Analysis and Electron Densities from Quantum Mechanics, Volume 5 of Rev. Comp. Chem., Chapter 3, S. 171–227. New York: VCH Publishers, 1994.

    Google Scholar 

  • R.F.W. Bader. Atoms in Molecules - A Quantum Theory, Volume 22 of International Series of Monographs on Chemistry. Oxford: Oxford Science Publications, 1990.

    Google Scholar 

  • R.F.W. Bader. Atoms in Molecules. Acc. Chem. Res. 18: 9–15, 1985.

    Article  Google Scholar 

  • R.F.W. Bader, P.L.A. Popelier and T.A. Keith. Die theoretische Definition einer funktionellen Gruppe und das Paradigma des Molekülorbitals. Angew. Chem. 106: 647–659, 1994.

    Google Scholar 

  • J. Cioslowski. A New Population Analysis Based on Atomic Polar Tensors. J. Am. Chem. Soc. 111: 8333–8336, 1989.

    Article  Google Scholar 

  • S. Dapprich and G. Frenking. Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals. J. Phys. Chem. 99: 9352–9362, 1995.

    Article  Google Scholar 

  • E.R. Davidson. Electronic Population Analysis of Molecular Wavefunctions. J. Chem. Phys. 46: 3320–3324, 1967.

    Article  Google Scholar 

  • C. Ehrhardt and R. Ahlrichs. Population Analysis Based on Occupation Numbers II. Relationship between Shared Electron Numbers and Bond Energies and Characterization of Hypervalent Contributions. Theor. Chim. Acta 68: 231–245, 1985.

    Article  Google Scholar 

  • M.J. Field, P.A. Bash and M. Karplus. A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations. J. Comp. Chem. 11: 700–733, 1990.

    Article  Google Scholar 

  • C. Froese Fischer. The Hartree-Fock Method for Atoms. New York: John Wiley & Sons, 1977.

    Google Scholar 

  • C. Froese Fischer, T. Brage and P. Jönsson. Computational Atomic Structure - An MCHF Approach. Philadelphia: Institute of Physics Publishing Bristol, 1997.

    Google Scholar 

  • J. Gao. Methods and Applications of Combined Quantum Mechanical and Molecular Mechanical Potentials, Volume 7 of Rev. Comp. Chem., Chapter 3, S. 121–185. New York: VCH Publishers, 1996.

    Google Scholar 

  • C. Gatti, P. Fantucci and G. Pacchioni. Charge Density Topological Study of Bonding in Lithium Clusters. Theor. Chim. Acta 72: 433–458, 1987.

    Article  Google Scholar 

  • J.S. Griffith. The Theory of Transition-Metal Ions. Cambridge: Cambridge University Press, 1964.

    Google Scholar 

  • R. Heinzmann and R. Ahlrichs. Population Analysis Based on Occupation Numbers of Modified Atomic Orbitals (MAOs). Theoret. Chim. Acta 42: 33–45, 1976.

    Article  Google Scholar 

  • J. Hinze, F. Biegler-Konig and A.G. Lowe. Molecular Charge Density Analysis. Can. J. Chem. 74: 1049–1053, 1996.

    Article  Google Scholar 

  • J. Hinze and D. Bergmann. Elektronegativität und Moleküleigenschaften. Angew. Chem. 108: 162–176, 1996.

    Google Scholar 

  • H. Huber, A.J. Dyson and B. Kirchner. Calculation of Bulk Properties of Liquids and Supercritical Fluids from Pure Theory. Chem. Soc. Rev. 28: 121–133, 1998.

    Article  Google Scholar 

  • R.B. Lindsay and H. Margenau. Foundations of Physics. Woodbridge: Ox Bow Press, 1981.

    Google Scholar 

  • I. Mayer. Charge, Bond Order and Valence in the Ab Initio SCF Theory. Chem. Phys. Lett. 97: 270–274, 1983.

    Article  Google Scholar 

  • J. Meister and W.H.E. Schwarz. Principal Components of Ionicity. J. Phys. Chem. 98: 8245–8252, 1994.

    Article  Google Scholar 

  • W.J. Mortier. Electronegativity Equalization and its Applications (in: Electronegativity), Volume 66 of Structure and Bonding, S. 125–143. Berlin, Heidelberg: Springer-Verlag, 1987.

    Google Scholar 

  • R.S. Mulliken. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 23: 1833–1840, 1955.

    Article  Google Scholar 

  • L. Pauling. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. Ithaca: Cornell University Press, 1948.

    Google Scholar 

  • L. Pauling. The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms. J. Am. Chem. Soc. 54: 3570–3582, 1932.

    Article  Google Scholar 

  • F.L. Pilar. Elementary Quantum Chemistry, Chemistry Series, 2nd edn. Singapore: McGraw-Hill International Editions, 1990.

    Google Scholar 

  • P.L.A. Popelier. A Fast Algorithm to Compute Atomic Charges Based on the Topology of the Electron Density. Theor. Chem. Acc. 105: 393–399, 2001.

    Google Scholar 

  • H. Primas and U. Müller-Herold. Elementare Quantenchemie, 2nd edn. Stuttgart: B.G. Teubner, 1990.

    Google Scholar 

  • A.E. Reed, R.B. Weinstock and F. Weinhold. Natural Population Analysis. J. Chem. Phys. 83: 735–746, 1985.

    Article  Google Scholar 

  • A.E. Reed, L.A. Curtiss and F. Weinhold. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 88: 899–926, 1988.

    Article  Google Scholar 

  • M. Reiher. A Systems Theory for Chemistry. Found. Chem. 5: 23–41, 2003.

    Article  Google Scholar 

  • M. Reiher and J. Hinze. Four-Component ab initio Methods for Electronic Structure Calculations of Atoms, Molecules, and Solids. In B.A. Hess (Ed.), Relativistic Effects in Heavy-Element Chemistry and Physics, S. 61–88. Wiley, 2003.

  • M. Reiher, D. Sellmann and B.A. Hess. Stabilization of Diazene in Fe(II)-Sulfur Model Complexes Relevant for Nitrogenase Activity. I. A New Approach to the Evaluation of Intramolecular Hydrogen Bond Energies. Theor. Chem. Acc. 106: 379–392, 2001.

    Google Scholar 

  • M. Reiher, O. Salomon, D. Sellmann and B.A. Hess. Stabilization of Diazene in Iron Sulfur Model Complexes for Nitrogenase Activity. Part II. Dinuclear Diazene Iron and Ruthenium Complexes as Models for Studying Nitrogenase Activity. Chem. Eur. J. 7: 5195–5202, 2001.

    Article  Google Scholar 

  • K.R. Roby. Quantum Theory of Chemical Valence Concepts. I. Definition of the Charge on an Atom in a Molecule and of Occupation Numbers for Electron Density Shared between Atoms. Mol. Phys. 27: 81–104, 1974.

    Article  Google Scholar 

  • D. Schröder, A. Fiedler, J. Hrusák and H. Schwarz. Experimental and Theoretical Studies toward a Characterization of Conceivable Intermediates Involved in the Gas-Phase Oxidation of Methane by Bare FeO+. Generation of Four Distinguishable [Fe,C,H4,O]+ Isomers. J. Am. Chem. Soc. 114: 1215–1222, 1992.

    Article  Google Scholar 

  • D. Schröder, A. Fiedler, M.F. Ryan and H. Schwarz. Surprisingly Low Reactivity of Bare FeO+ in Its Spin-Allowed, Highly Exothermic Reaction with Molecular Hydrogen To Generate Fe+ and Water. J. Phys. Chem. 98: 68–70, 1994.

    Article  Google Scholar 

  • D. Schröder and H. Schwarz. C-H and C-C Bond Activation by Bare Transition-Metal Oxide Cations in the Gas Phase. Angew. Chem. Int. Ed. Engl. 34: 1973–1995, 1995.

    Article  Google Scholar 

  • D. Stöckigt and H. Schwarz. Reactivity Tuning by Ligand Effects: Gas-Phase Reactions of Fe(C6H6)O+ versus “Bare” FeO+. Chem. Ber. 127: 2499–2503, 1994.

    Google Scholar 

  • L. Szasz. The Electronic Structure of Atoms. New York: JohnWiley & Sons, 1992.

    Google Scholar 

  • W. Thiel. Computational Methods for Large Molecules. J. Molec. Struct. (THEOCHEM) 398–399: 1–6, 1997.

    Article  Google Scholar 

  • K. Wieghardt. Bioanorganische Modellkomplexe - ein schillerndes Schlagwort? Nachr. Chem. Tech. Lab. 33: 961–963, 1985.

    Google Scholar 

  • D.E. Wilson. Net Atomic Charges and Multipole Models for the ab Initio Molecular Electric Potential, Volume 2 of Rev. Comp. Chem. Chapter 6, S. 219–271. New York: VCH Publishers, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiher, M. The systems-theoretical view of chemical concepts. Foundations of Chemistry 5, 147–163 (2003). https://doi.org/10.1023/A:1023672816861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023672816861

Keywords

Navigation