Skip to main content

Advertisement

Log in

Reflections on the deBroglie–Bohm Quantum Potential

  • Original Article
  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

The deBroglie–Bohm quantum potential is the potential energy function of the wave field. The quantum potential facilitates the transference of energy from wave field to particle and back again which accounts for energy conservation in isolated quantum systems. Factors affecting energy exchanges and the form of the quantum potential are discussed together with the related issues of the absence of a source term for the wave field and the lack of a classical back reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abolhasani, M., & Golshani, M. (1999). Born’s principle, action-reaction problem, and arrow of time. Foundations of Physics Letters, 12, 299–306.

    Article  Google Scholar 

  • Anandan, J., & Brown H. R. (1995). On the reality of space-time geometry and the wavefunction. Foundations of Physics, 25, 349–360.

    Article  Google Scholar 

  • Baggott, J. (1992). The meaning of quantum theory. Oxford: Oxford University Press.

    Google Scholar 

  • Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “Hidden” variables.’ I & II. Physical Review 85:166–79 and 180–193.

    Google Scholar 

  • Bohm, D. (1953). A discussion of certain remarks by Einstein on Born’s probability interpretation of the ψ-Function, in Scientific Papers Presented to Max Born, Oliver & Boyd, Edinburgh and London.

  • Bohm, D. (1957). Causality and chance in modern physics. London: Routledge & Kegan Paul.

    Google Scholar 

  • Bohm, D., & Hiley B. J. (1987). An ontological basis for the quantum theory I. Physics Reports, 144, 323–348.

    Article  Google Scholar 

  • Bohm, D., & Hiley, B. J. (1993). The undivided universe: An ontological interpretation of quantum theory. London and New York: Routledge.

    Google Scholar 

  • Close, F. (2004). Particle physics: A very short introduction. Oxford: Oxford University Press.

    Google Scholar 

  • Cushing, J. T. (1994). Quantum mechanics: Historical contingency and the copenhagen hegemony. Chicago: Chicago University Press.

    Google Scholar 

  • Cushing, J. T. (1998). Philosophical concepts in physics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cushing J. T., Fine, A., & Goldstein, S. (eds) (1996). Bohmian mechanics and quantum theory: An appraisal. Dordrecht: Kluwer.

    Google Scholar 

  • de Broglie, L. (1924). A tentative theory of light quanta. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 47, 446–458.

    Google Scholar 

  • Dewdney, C., & Hiley, B. J. (1982). A quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells. Foundations of Physics, 12, 27–48.

    Article  Google Scholar 

  • Doughty, N. A. (1990). Lagrangian interaction: An introduction to relativistic symmetry in electrodynamics and gravitation. Sydney: Addison-Wesley.

    Google Scholar 

  • Fowles, G. R. (1977). Analytical mechanics. NY: Holt, Rinehart and Winston.

    Google Scholar 

  • Freistadt, H. (1957). The causal formulation of the quantum mechanics of particles. Supplemento Nuovo Cimento, V, 1–70.

    Google Scholar 

  • Garashchuk, S., & Rassolov, V. A. (2003). Quantum dynamics with bohmian trajectories: Energy conserving approximation to the quantum potential. Chemical Physics Letters, 376, 358–363.

    Article  Google Scholar 

  • Garashchuk, S., & Rassolov, V. A. (2004). Energy conserving approximations to the quantum potential: Dynamics with linearized quantum force. Journal of Chemical Physics, 120, 1181–1190.

    Article  Google Scholar 

  • Goldstein, H. (1980). Classical mechanics. M.A.: Addison-Wesley, Reading.

    Google Scholar 

  • Grubin, H. L., Kreskovsky, J. P., Govindan, T. R., & Ferry, D. K. (1994). Uses of the quantum potential in modelling hot-carrier semiconductor devices. Semiconductor Science and Technology, 9, 855–858.

    Article  Google Scholar 

  • Guarini, M. (2003). Bohm’s metaphors, causality, and the quantum potential. Erkenntnis, 59, 77–95.

    Article  Google Scholar 

  • Holland, P. R. (1993). The quantum theory of motion: An account of the deBroglie–Bohm causal interpretation of quantum mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, J. D. (1975). Classical Electrodynamics. New York: Wiley.

    Google Scholar 

  • Jammer, M. (1966). The conceptual development of quantum mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Johnk, C. T. A. (1975). Engineering electromagnetic fields and waves. New York: Wiley.

    Google Scholar 

  • Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. Freeman: San Francisco.

    Google Scholar 

  • Parmenter, R. H., & DiRienzo, A. L. (2004). Reappraisal of the causal interpretation of quantum mechanics and of the quantum potential concept. eprint arXiv:quantum-0305183 (22 May 2004).

  • Petersen, A. (1963). The philosophy of Niels Bohr. The Bulletin of the Atomic Scientists, 19, 8–14.

    Google Scholar 

  • Riggs, P. J. (1999). Quantum phenomena in terms of energy-momentum transfer. Journal of Physics A: Mathematical and General, 32, 3069–3074.

    Article  Google Scholar 

  • Rindler, W. (1977). Essential relativity: Special, general, and cosmological. Berlin: Springer.

    Google Scholar 

  • Rindler, W. (1982). Introduction to special relativity. Oxford: Pergamon.

    Google Scholar 

  • Sefton, I. (2002). ‘Understanding electricity and circuits: What the text books don’t tell you’ in Proceedings of the 9th Science Teachers Workshop (Science Foundation for Physics, Sydney). Also available at: http://science.uniserve.edu.au/school/curric/stage6/phys/stw2002/sefton.pdf.

  • Smart, J. J. C. (1968). Between science and philosophy: An introduction to philosophy of science. New York: Random House.

    Google Scholar 

  • Squires, E. J. (1994). Some comments on the de Broglie-Bohm picture by an admiring spectator. In A. van der Merwe & A. Garuccio (Eds.), Waves and particles in light and matter. New York and London: Plenum Press.

    Google Scholar 

  • Veltman, M. J. G. (2003). Facts and mysteries in elementary particle physics. New Jersey: World Scientific.

    Google Scholar 

  • Weyl, H. (1952). Space-time-matter. New York: Dover.

    Google Scholar 

  • Woit, P. (2006). Not even wrong: The failure of string theory and the continuing challenge to unify the laws of physics. London: Jonathon Cape.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Riggs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riggs, P.J. Reflections on the deBroglie–Bohm Quantum Potential. Erkenn 68, 21–39 (2008). https://doi.org/10.1007/s10670-007-9054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10670-007-9054-1

Keywords

Navigation