Skip to main content
Log in

The measure of biological age in plant modular systems

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Phytomorphology — if concerned with development — often concentrates on correlative changes of form and neglects the aspects of age, time and clock, although the plant's spatial and temporal organisation are intimately interconnected. Common age as measured in physical time by a physical process is compared to biological age as measured by a biological clock based on a biological process. A typical example for a biological clock on the organ level is, for example, a shoot. Its biological age is measured by the biological time unit of a plastochron, which itself is defined by the cyclic-periodic initiation of the leaves. In a controlled environment biological age may replace physical age. However, biological and physical age are not necessarily linearly convertible into each other. In stationary or steady state conditions the repetitive initiation of any organ, unit or “module” of an articulate plant or plant “modular system” may define the biological time unit. A linear — monotonous biological process, e.g. axis elongation, may also define a biological time unit as a certain amount of additional growth, e.g. of length. One may speak of “periodical” and of “continuous plastochron” or, perhaps, of “plastochron” and “rheochron”. A precise measure of biological age is the generalized plastochron index applying to any modular system and module respectively. However, one should be aware that it is based on two clocks, one of them referring to the periodic process of module initiation for counting the integer plastochrons and the other to the continuous plastochron of module growth for the determination of the fraction of one plastochron. The application of the concepts is restricted to phases of stationary or steady state growth and development. In certain cases of non-stationary or non-steady state conditions a normalized-age concept may apply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Askenasy, E. (1880). Über eine neue Methode, um die Verteilung der Wachstumsintensität in wachsenden Teilen zu bestimmen.- Verh. naturk-med. Ver. Heidelberg N.F. 2: 70–153.

    Google Scholar 

  • Ayala, F.J. (1986). On the virtues and pitfalls of the molecular evolutionary clock.- J. Heredity 77: 226–236.

    Google Scholar 

  • Backman, G. (1943). Wachstum und organsiche Zeit.- Bios 15: 1–195.

    Google Scholar 

  • Barsch-Gollnau, S., Ritterbusch, A. and Mohr, H. (1980). Photomorphogenesis and phyllotaxis during vegetative growth in Sinapis alba and Xanthium strumarium.- Plant, Cell Envir. 3: 363–370.

    Google Scholar 

  • Bünning, E. (1977). Die physiologische Uhr.- Berlin: Springer.

    Google Scholar 

  • Deppert, W. (1981). Grundlagen einer Theorie der Systemzeiten.- Allg. Zeitschrift Philosophie 6: 1–25.

    Google Scholar 

  • Dormer, K.J. (1965). Correlations in plant development: general and basic aspects.- Encycl. Plant. Physiol. 15: 452–478.

    Google Scholar 

  • Dormer, K.J. (1972). Shoot organization in vascular plants.- London, Chapman and Hall.

    Google Scholar 

  • Edmunds, L.N. (1988). Cellular and molecular basis of biological clocks.- New York, Springer.

    Google Scholar 

  • Erickson, R.O. and Meicenheimer, R.D. (1977). Photoperiod induced change in phyllotaxis in Xanthium.- Amer. J. Bot. 64: 981–988.

    Google Scholar 

  • Erickson, R.O. and Michelini, F.J. (1957). The plastochron index.- Amer. J. Bot 44: 297–305.

    Google Scholar 

  • Erickson, R.O. and Silk, W.K. (1980). The kinematics of plant growth.- Sci. Amer. 242: 102–113.

    Google Scholar 

  • Goodwin, B.C. (1970). Temporal order as the origin of spatial order in embryos.- Studium generale 23: 273–282.

    Google Scholar 

  • Hock, B. and Mohr, H. (1965). Eine quantitative Analyse von Wachtumsvorgängen im Zusammenhang mit der Photomorphogenese von Senfkeimlingen (Sinapis alba L.).- Planta 65: 1–16.

    Google Scholar 

  • Hofstra, G., Hesketh, J.D. and Myhre, D.L. (1977). A plastochron model for soybean leaf and stem growth.- Can. J. Plant Sci. 57: 167–175.

    Google Scholar 

  • Janich, P. (1969). Die Protophysik der Zeit.- Frankfurt: Suhrkamp.

    Google Scholar 

  • Jean, R.V. (1978). Growth and entropy: Phylogenism in phyllotaxis.- J. Theor. Biol. 71: 639–660.

    Google Scholar 

  • Lamoreaux, R.J., Chaney, W.R. and Brown, K.M. (1978). The plastochron index: A review after two decades of use.- Amer. J. Bot. 65: 586–593.

    Google Scholar 

  • Leonhard, J. (1986). Untersuchungen zur Entwicklungsgeschichte der Blüten bei Scrophulariaceen — Pseudolysimachion spiccatum Opiz.- Diplomarbeit, Fakultät Biologie, Universität Freiburg.

  • Lindenmayer, A. (1984). Positional and temporal control mechanisms in inflorescence development.- In: P.W. Barlow and D.J. Carr, eds., Positional Controls in Plant Development, p.461–486. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maksymowych, R. (1973). Analysis of Leaf Development.- Cambridge: Cambridge University Press.

    Google Scholar 

  • Maksymowych, R. and Erickson, R.O. (1977). Phyllotactic change induced by gibberellic acid in Xanthium shoot apices.- Amer. J. Bot. 64: 33–44.

    Google Scholar 

  • Meier-Weniger, W. (1977). Untersuchungen zur Entwicklungsgeschichte der Blüten von Pedicularis foliosa L. und P. recutita L. (Scrophulariaceae).- Dissertation, Universität Basel.

  • Mittelstaedt, P. (1981). Philosophische Probleme der modernen Physik.- Mannheim: Bibliographisches Institut.

    Google Scholar 

  • Niedermüller, H. (1983). Zeit und Altern.- Naturwiss. Rundschau 36: 147–152.

    Google Scholar 

  • Passecker, F.v. (1977). Theorie der ontogenetischen Evolution und Alterung holziger Gewächse.- Die Bodenkultur 28: 277–294.

    Google Scholar 

  • Pieters, G.A. (1983). Growth of Populus euramericana.- Physiol. Plant. 57: 455–462.

    Google Scholar 

  • Rensing, L. (1973). Biologische Rhythmen und Regulation.- Stuttgart, Fischer.

    Google Scholar 

  • Ritterbusch, A. (1971). Morphologische Untersuchungen zur Wuchsform von Philodendron.- Bot. Jahrb. Syst. 90: 527–549.

    Google Scholar 

  • Ritterbusch, A. (1976). Die Organopoiese der Blüte von Calceolaria tripartita R. et P. (Scrophulariaceae).- Bot. Jahrb. Syst. 95: 267–320.

    Google Scholar 

  • Ritterbusch, A. (1980a). The spatio-temporal patterns of growth and development in floral ontogenesis as visualized by bildscharen and trajectories.- Flora 169: 405–423.

    Google Scholar 

  • Ritterbusch, A. (1980b). The modeling of growth and development, a transformational approach to floral ontogenesis.- Flora 169: 498–509.

    Google Scholar 

  • Ritterbusch, A. (1982). Wachstum und Entwicklung als Begriffe der Morphologie.- Ber. Dtsch. Bot. Ges. 95: 127–131.

    Google Scholar 

  • Ritterbusch, A. and Wunderlin, U. (1989). On growth and development — a spatiotemporal analysis of flower ontogenesis.- Envir. Exper. Bot. 29: 111–121.

    Google Scholar 

  • Ritterbusch, A. (1989). Comparison of temporal patterns in flower ontogenesis by means of normalized-age sequences.- Ann. Bot. 63: 179–183.

    Google Scholar 

  • Ritterbusch, A. (1990). The construction of plastochron ordered sequences in flower ontogenesis.- Flora (in press).

  • Rogers, S.O. and Quatrano, R.S. (1983). Morphological staging of wheat caryopsis development.- Amer. J. Bot. 70: 308–311.

    Google Scholar 

  • Schüepp, O. (1923). Wachstumsmessungen an Knosper und Vegetationspunkten.- Verh. Naturf. Ges. Basel 34: 41–68.

    Google Scholar 

  • Schüepp, O. (1966). Meristeme.- Basel, Birkhäuser.

    Google Scholar 

  • Schüepp, O. and Chang, Ch.Y. (1938). Der Einfluss der Lichtintensität auf Wachstum und Differenzierung des Sprosses von Sinapis alba.- Verh. natf. Ges. Basel 49: 93–117.

    Google Scholar 

  • Schroeder, F.-G. (1987). Infloreszenzen, Synfloreszenzen und Moduln. Ein terminologischer Beitrag zur Infloreszenzmorphologie.- Bot. Jahrb. Syst. 108: 449–471.

    Google Scholar 

  • Stein, O.L. and Weber, A.V. (1954). Comparison of two methods of analysis of rate of leaf initiation in Zea mays L.- Science 120: 574–575.

    Google Scholar 

  • Straalen, N.M. van (1983). Physiological time and time-invariance.- J. Theor. Biol. 104: 349–357.

    Google Scholar 

  • Sundberg, M.D. (1982). Floral ontogeny in Cyclamen persicum ‘F-1 Rosamund rose’ (Primulaceae).- Amer. J. Bot. 69: 380–388.

    Google Scholar 

  • Tomlinson, P.B. (1984). Homology in modular organisms — concepts and consequences. Introduction.- Systematic Bot. 9: 373–381.

    Google Scholar 

  • Vansickle, J. (1977). Analysis of a distributed-parameter population model based on physiological age.- J. Theor. Biol. 64: 571–586.

    Google Scholar 

  • Vendeland, J.S., Sinclair, T.R., Spaeth, S.C. and Cortes, P.M. (1982). Assumptions of plastochron index: evaluation with soya bean under field drought conditions.- Ann. Bot. 50: 673–680.

    Google Scholar 

  • White, J. (1984). Plant metamerism. In: R. Dirzo and J. Sarukhan, eds., Perspectives on Plant Population Biology, p.15–47.- Sunderland, MA: Sinauer Assoc. Inc.

    Google Scholar 

  • Winfree, A.T. (1980). The geometry of biological time.- New York: Springer.

    Google Scholar 

  • Wunderlin, U. (1985). Entwicklungsgeschichtliche Untersuchungen an Blüten von Scrophulariaceen.- Staatsexamensarbeit, Fakultät Biologie, Universität Freiburg.

  • Wunderlin, U. (1988). Untersuchungen zur vergleichenden Entwicklungsgeschichte von Scrophulariaceen-Blüten.- Dissertation, Fakultät Biologie, Universität Freiburg.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritterbusch, A. The measure of biological age in plant modular systems. Acta Biotheor 38, 113–124 (1990). https://doi.org/10.1007/BF00047548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047548

Key words

Navigation