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1.  Introduction

Consider propositions of form (ALL):

(ALL)
All Fs are Gs

A proposition of this form might be true as a matter of fact.  It might also be true as a matter of natural law.  What about a proposition of form (R%)?

(R%)
R% of the Fs are Gs

There is no doubt that a proposition of this form might be true in fact.  Might it also be a law of nature?
  Well, why not?  (ALL) is, after all, equivalent to a special case of (R%) – the case where R = 100 (and there are finitely many Fs).  Why should it be possible for a proposition of this form to be a law when R takes one of its possible values but not when it takes others?  Still, the very idea that there could be a law of nature of the form (R%) is unfamiliar (and perhaps weird).  We should proceed cautiously.


A law of the form (R%) would be a law about frequencies.  Note that (R) does not say that each F has a chance of R% of being a G, or that in a hypothetical infinite sequence of Fs the frequency of Gs would converge to R% in the limit; it says that R% of the Fs that actually exist are Gs.  Let us understand this as meaning that throughout spacetime R% of the Fs that ever did or do or will exist are Gs.  So such a law would be a law about actual global frequencies.  (R%) is only the simplest form such a law might take; we can also entertain the possibility of laws about frequencies that take a more complex form.  For instance, a law might not assign a definite value to a frequency, but instead equate that value with some function of other physical variables.  It might state that a certain frequency lies within an interval, rather than assigning a particular numerical value to it.  It might state that a certain frequency lies within an interval whose endpoints are functions of other physical variables.  It might govern a whole class of frequencies at once – for example, if {Gi} and {Fj} are two parametrized families of properties, then we can entertain the possibility of a law that says that the frequency of Gi’s among the Fj’s is a certain function of i and j.  And it might have built into it a provision for the infinite case – for example, it might say that the frequency of Gs among the Fs is R% if there are finitely many Fs, and otherwise the limiting frequency in some sequence of Fs constructed in such-and-such a way converges to R%.
  It is an interesting question whether there really might be laws of nature of some or all of these forms.


In this paper I will argue that we have every reason to think that there could be laws about frequencies, of all these forms and more besides.  In any event, they raise no more troubling philosophical problems than “garden variety” laws of forms like (ALL) do.  I will also argue that when we consider what a world governed by such laws would be like, we find that it would be very much like what we commonly assume a world governed by probabilistic laws would be like.  Indeed, I will argue that once we entertain the possibility of laws about frequencies, we have no way of telling which of these two sorts of world we live in.  This makes it attractive to consider interpreting the probabilistic laws posited by modern scientific theories (such as quantum mechanics and evolutionary biology) as laws about frequencies.

This interpretation of probabilistic laws may seem hopeless.  It appears to run against common sense by implying, for instance, that if it is a law that the half-life of a tritium atom is 4500 days, then it is physically necessary for exactly half of the tritium atoms that ever exist to decay within 4500 days, and so it is physically necessary for the number of tritium atoms to be even!  But I will argue that in fact this interpretation turns out to be very interesting.  (It does not really imply that the number of tritium atoms must be even, by the way; see Section 2.)  It can be combined with any theory of lawhood (Humean or Anti-Humean, necessitarian or contingentist, realist or non-realist) to yield a complete interpretation of probabilistic laws which delivers everything we could ask for from such a theory.  The metaphysical raw materials that it must take for granted include nothing over and above whatever metaphysical raw materials must be presumed by the theory of lawhood on which it is based – so, when you buy a philosophical account of what garden-variety (i.e., non-probabilistic) laws of nature are, this interpretation lets you have a complete account of the metaphysics of probabilistic laws at no extra cost.  The resulting view is clearly a form of frequentism (I will call it nomic frequentism), but it is importantly different from the familiar versions of the frequentist interpretation of probability, and it evades all of the most common objections to that interpretation.  

Such an interpretation of the probabilistic laws of scientific theories is unusual and perhaps quite counterintuitive.  So a powerful argument might be required in order to justify taking it seriously.  In order to be as clear as possible about how the argument of this paper will work, let me close this introduction by describing its structure.  First of all, I will lay some groundwork in Sections 2 and 3 by describing the range of forms that laws about frequencies might take, if there are any.  Then in Sections 4 and 5 I will discuss the question of what things would have to be like in order for there to be laws about frequencies, and whether it is possible for them to be that way.  I will argue that despite some apparent worries, there is really no good reason to think that laws about frequencies are impossible.  What is more, each of the leading philosophical theories of lawhood leaves room for the possibility of such laws.  It is important to notice that up to this point in the argument, no claim is being made about any of the laws of nature of the actual world; the claim being made and defended is simply that it is possible for there to be laws about frequencies. Then in Section 6 I will take up the question of what roles hypotheses about laws about frequencies might play in science.  In particular, I will consider the question of what someone who accepted a hypothesis to the effect that there are certain laws about frequencies should be prepared to predict, to what degree she should expect various future events, and to what extent she would be able to explain various possible occurrences.  The answers to these questions will help us to see to what extent various possible observations would count as evidence in favor or, or against, various hypotheses that posit laws about frequencies.  It will turn out that in all these respects, hypotheses positing laws about frequencies will play exactly the same role as corresponding hypotheses that posit probabilistic laws as more standardly conceived – that is, as hypotheses that post laws governing objective, single-case probabilities, i.e. chances.

The upshot is that there is no difference so far as the practices of scientific prediction, testing, confirmation, and explanation go between accepting a hypothesis positing laws about frequencies and one positing laws about chances.  Insofar as we have evidence for or against a certain hypothesis about chances, we have exactly the same evidence for or against a corresponding hypothesis about laws about frequencies; insofar as accepting a certain hypothesis about chances would lead us to make certain predictions or enable us to explain certain phenomena, a corresponding hypothesis about laws about frequencies would do the very same job.  This leads us to the conclusion that either hypotheses about chances just are hypotheses about laws about frequencies, or else these are different kinds of hypotheses but different in a way that makes no difference for the practice of science.  Even if the probabilistic laws that modern scientists have posited were not intended (by the scientists who posited them) to be laws about frequencies, laws about frequencies would have done the job just as well, and if we revised all these theories by substituting laws about frequencies for laws governing chances, then the resulting theories would match the scientific virtues of the original ones.  Since laws about frequencies are far less mysterious than chances – raising no new metaphysical worries or issues at all over and above those raised by the idea of a law of nature itself – this gives us an excellent (though not compelling) reason to interpret (or perhaps, reformulate) the familiar probabilistic laws of modern scientific theories as laws about frequencies.
2.  The Variety of Possible Forms of Laws about Frequencies
If there are laws about frequencies, they need not all take the form of (R%).  Here is one alternative form they might take:

(A)
The frequency with which Fs are Gs is in the interval (R – d, R + d).

A law of this form, unlike a law of the form (R%), would be compatible with some deviation of the actual frequency from the one that occurs in the law.  Here is another alternative form:

(B)
The frequency with which Fs are Gs is in the interval (R – 1/(2N), R + 1/(2N)), where N is the cardinality of the Fs.
A law of form (B), unlike one of form (R%), would not require that the number of Fs must be an even multiple of 1/R.  This allows it to avoid the problem mentioned above, that e.g. a law that assigned a half-life to any isotope would thereby make it physically necessary that the number of atoms of that isotope be even.  Moreover, a law of the form (B) is compatible with the Fs having any finite cardinality.  (And this sets (B) apart not only from (R%), but also from (A).)   It also has the intuitively nice feature that it implies that the more Fs there are, the closer their G-frequency must be to the value stated in the law.  (When there are relatively few cases, we are more willing to accept the possibility of great divergences between the actual frequency and the law-mandated probability.) 


What if we want to allow for the possibility that there are infinitely many Fs?  Then we will want our law about the frequency with which Fs are Gs to concern a limiting frequency, rather than an actual frequency.  We might try:

(C’)
In an infinite sequence {f1, f2, ….} containing all and only the particulars that are F, the limit of the frequency of Gs among {f1, f2, … fn} converges to r as n grows arbitrarily large.

But this will not do.  For there is no unique infinite sequence containing all of the particular Fs; there are infinitely many such sequences.  Moreover, different sequences can have different limiting frequencies.  In fact, if there are infinitely many Fs that are Gs, and infinitely many Fs that are non-Gs, then we can pick any frequency x that we like, and there will be some way of arranging the Fs into a sequence such that the limiting frequency of Gs among the first n Fs will approach x as n approaches infinity.  (For example, if x = 1/7, then just arrange the Fs in a sequence that starts with six non-G Fs, which is followed by a single G F, which is followed by six more non-G Fs, which is followed by another lone G F, and so on.)  This is a problem:  It is not obvious how we can formulate a law about frequencies that allows for the infinite case.

One might object that this is not so if we insist on using a random sequence of Fs to define the limit.  But what does ‘random’ mean here?  It might mean that the Fs are selected and placed in a sequence by some random process.  (For example, we might hold a lottery to see which one will be first in the sequence, then hold a second lottery to see which one will be second, and so on.)  But then, it is still possible that we will end up with a sequence in which the limiting frequency is x, for any x.  So what we need to say is that the limit we are looking for is the frequency f such that, if we use a random process for ordering the Fs into a sequence, then the probability that the resulting sequence will have any value other than f is vanishingly small.  But then, we need to know already how to interpret the probabilities mentioned in this statement.  Since what I am ultimately doing here is looking for a way to interpret the probabilistic laws of scientific theories, it is undesirable to appeal to an antecedent notion of probability here.  So there is no solution here.

More promisingly, we might take randomness to be a property of the sequence of Fs itself, rather than of the process by which it was generated.  Following von Mises (1981, 24-25), we can understand a random sequence of Fs to be one such that there is no specifiable method of selecting a subsequence from it (in ignorance of which members of the sequence are Gs and which are non-Gs) in which the limiting frequency of Gs will be different from that in the original sequence.
  Or, we might use a more sophisticated characterization  of random sequences, such as the one developed by Wald and Church (see Gillies (2000, 107-108).  But this turns out not to help.  Suppose for the sake of argument that we have settled what we mean by a “random sequence” in some satisfactory way.  Presumably, for any number x between 0 and 1, the limiting frequency of Gs among the Fs could have been x.  So, for any such x, there should be some random sequence of occurrences of “G” and “Non-G” in which the limiting frequency of “G” is x.  Pick one such sequence and call it Sx.  Now, suppose that there are an infinite number of Fs that are G and an infinite number of Fs that are not G.  Then there is a way to arrange these Fs into a sequence such that the ith member of the sequence is a G if and only if the ith member of Sx is “G”.  Obviously, the limiting frequency of Gs in the resulting sequence of Fs will be equal to x.  And Sx is ex hypothesi a random sequence.  But x could have been any number between 0 and 1.  So if there are infinitely many Fs that are G and infinitely many Fs that are not G, then for any number between 0 and 1, the Fs can be arranged in a random sequence in which the limiting frequency of G is x.  So the restriction to random sequences of Fs does not solve our problem.

But the problem can be solved.  All we need to do is let the law itself dictate how the limiting frequency is to be taken.  For example, consider (C):

(C)
In any growing-ball sequence
 {B1, B2, …} centered on any point p the frequency with which Fs in Bi are G converges to r as i grows arbitrarily large

where a growing ball sequence is a sequence of concentric four-dimensional spacetime balls centered on some spacetime point p such that for i < j, the jth ball contains the ith ball, and every point in spacetime is in at least one ball in the sequence.  The idea here is very simple and intuitive:  pick any place in spacetime to start; look at all the Fs within a certain space-time radius and calculate the fraction of them that are Gs; then look at all the Fs within a slightly largely spacetime radius and do the same thing; keep going.  As you keep looking out to further and further radii, eventually the fractions you get are going to settle down and converge to r.  And it doesn’t matter what place you picked to start with; you could have begin this process anywhere in spacetime, and your fractions would still eventually have settled down to r.  This is a natural and intuitive way to understand what it means for the frequency of Gs among the Fs to be r, when there are infinitely many Fs.
  So (C) is a form that a law about frequencies might intelligibly take, which would be consistent with the existence of infinitely many Fs.


Could there be a law about frequencies that, like (B), is consistent with the Fs having any finite cardinality, and like (C), is consistent with their cardinality being infinite?
  Yes – it might take from (D):

(D)
In any growing-ball sequence {B1, B2, …} centered on any point p, the frequency with which Fs in Bi are G converges to some value in the interval (r – 1/2N, r + 1/2N) as i grows arbitrarily large, where N is the cardinality of the Fs.

(D) is a natural way of spelling out the idea the frequency of Fs among the Gs is very close to r, in a way that allows the cardinality of the Fs to have any value, finite or infinite.  Let us abbreviate (D) thus:  The Fs are G with *-frequency r.  Note that if there are finitely many Fs, then it is possible for the Fs to be G with many different *-frequencies.  (E.g., if there are two Fs and one of them is a G, then the Fs are G with any *-frequencies between ¼ and ¾.)  But the more Fs there are, the narrower the range of frequencies with which the Fs can be G, and if there are infinitely many Fs, then the Fs can be G with at most one *-frequency.  But even if there are many different *-frequencies with which Fs are in fact G, there might be a unique r such that it is a law of nature that Fs are G with *-frequency r.


So if (D) is a law of nature, then:

(E)
It is a law of nature that Fs are G with *-frequency r.

Though I am concerned in this paper with the possibility of laws about frequencies in general, I am mostly concerned with the possibility of laws that take the form of (E).  But it is also interesting to consider the possibility of laws about frequencies that take a less simple form:  Instead of simply assigning values to particular frequencies or *-frequencies, some laws of nature might assert certain mathematical relations among such frequencies and other physical variables.  For example:

It is a law of nature that, for any directions z and u:  Electrons that have z-spin up, when measured for u-spin, are found to have u-spin up with *-frequency (cos ()2, where ( is the angle between the z-direction and the u-direction.

This example illustrates a technique that can be used over and over again:  Take any law form any scientific theory that posits objective probabilities, and substitute *-frequencies.  
3.  A Problem about Independence
There is a thorny issue that it will be helpful to address before going on.  It is commonly assumed that if there are probabilistic laws of nature, then these laws imply facts about the probabilistic independence of events from other events.  For example, consider one humble but respectable example of a theory that posits probabilistic laws of nature: the standard theory of games of chance, such as dice, roulette-wheels and the like.  According to this theory, each fair toss of a fair coin is independent of every other such toss.
  The probability of getting heads on a given toss is ½, and so is the conditional probability of getting heads given that the same coin landed heads on the last toss, or given that it came up tails on the last two tosses, or on the last five hundred tosses, or given that five hundred other fair coins were just tossed in the same room and all of them came up tails, etc.  What is more, this probability is unaffected by whatever else might be going on; so, the conditional probability of heads is ½ given that it is Tuesday, or that someone is playing the glockenspiel in the next room, or whatever.

On standard ways of thinking about probabilistic laws, it is easy to incorporate this idea into a formal presentation of the theory of games of chance.  For we can simply stipulate, as part of our theory, that there are laws that entail that 

(1)
Pr(H|F & A) = ½

where H is the proposition that a certain coin-toss lands heads-up
, F is the proposition that that same coin-toss is fair, and A is any “admissible” information whatsoever – that is, any proposition whose truth supervenes entirely on the part of the world that is not causally downstream of the coin-toss itself.  


But if we try to articulate the theory of games of chance as a theory that posts laws about frequencies
, matters are not so simple.  Suppose for example that we understand the law governing fair coin tosses as follows:

(2)
Fr(H|F & A) = ½

where Fr(-|-) stands for the relative-frequency function
 and H, F and A are as before.  (2) implies that for any set of conditions A that a fair coin-toss might be under, so long as these conditions supervene on what is not causally downstream of that toss – for example, the condition of being made on a Tuesday, or while it is raining in Paris, or immediately after a run of at least twenty tails-results – half of the fair coin-tosses made under those conditions result in heads.   But this is impossible.  In the first case, if there are only finitely many fair coin-tosses in history – N of them, say – then there is bound to be some set of conditions that is satisfied by all of these tosses except m of them – where m is some number less than N/2 – where the m coin-tosses that do not satisfy the conditions all land heads-up.  (If necessary, this set of conditions could be constructed by brute force, by simply taking the conjunction of the negations of descriptions that uniquely pick out each of the m exceptions.)  Then this set of conditions would pose a counterexample to (2), since the frequency of heads among the tosses that satisfy these conditions would be (N - m)/2, which is less than ½.
  On the other hand, if the number of fair coin-tosses is infinite, we need only start with some condition that only finitely many fair coin-tosses satisfy – e.g. occurring in London on June 1, 2010 – and then repeat the above procedure, adding this first condition to the set thereby generated. So it is impossible for (2) to be true in full generality; so it is impossible for it to be a law of nature.


Yet, it is undeniable that it is crucial to the standard theory of games of chance not only that the unconditional probability of getting heads on a fair coin-toss is ½, but also that this event is independent of the outcomes of all preceding fair coin-tosses, and indeed of all other conditions except those that depend causally on the outcome itself.  (If the conditional probability of getting heads on a toss of a given coin, given that the toss was made by a left-handed Gemini on a third Tuesday of the month while it was raining in Paris (or whatever), was anything other than ½, then that coin simply would not be fair!)  So any formal presentation of this theory must incorporate this independence in order to be an adequate presentation of the theory.  Something along the lines of (1) is the obvious way to incorporate this independence requirement, but if we wish to try formulate the standard theory of games of chance as a theory of laws about frequencies, (1) amounts to (2) which could not possibly be true.  So either the laws of the standard theory of games of chance cannot coherently be interpreted as laws about frequencies, or else there must be some different way of incorporating the idea of independence.


A different way is available.  The key idea is that a theory need not just be a list of posited laws of nature; among other things, it can also include the negative claim that there do not exist any laws of nature meeting certain descriptions.  One example would be a completeness clause:  “There are no laws of nature other than the ones propounded above.”  But even if it lacked a fully general completeness clause, a theory might also include the claim that there are no additional laws relevant to the subject matter of the theory.  Many real scientific theories are most plausibly interpreted as implicitly containing such a clause; for example, Newton’s theory (as articulated in Principia) does not purport to state all of the laws of nature that there are, but it is most naturally interpreted as including an implicit clause to the effect that there are no additional force laws that would imply the existence of non-negligible extra-gravitational forces acting on the planets.  (For without taking some such clause for granted, most of the applications of the theory Newton made would have been unjustified.)


In the case at hand, we can formulate the theory of games of chance (or at least, the part of it pertaining to fair coin-tosses) as follows.  First of all:

(3)
It is a law of nature that Fr(H|F) = ½ 

that is, it is a law that half of the fair coin-tosses result in heads.  Second:

(4)
There is no law of nature of the form Fr(H|F&A) = c, where c ( ½ and A is admissible (i.e. supervenes on what is not causally downstream from H).
If both of these conditions are met, then there may well be conditions A such that Fr(H|F&A) ( ½.  But this will be a pure accident, not a consequence of the laws of nature.  By contrast, the fact that half of the fair coin-tosses overall result in heads will be a consequence of the laws of nature.  So, to anthropomorphize a bit, the laws will oversee the distribution of outcomes among the fair coin-tosses in such a way as to guarantee that they are evenly divided between heads and tails, but these laws will pay no regard to the distribution of outcomes among fair coin-tosses made on a Tuesday while it is raining in Paris (or whatever), letting those distributions fall out as they may.  This provides an important sense in which the outcome of a fair coin-toss is independent of the conditions it should be independent of:  The laws of nature impose no constraints on the conditional frequency of heads given that condition.  By contrast, the outcome of a coin-toss is not independent of its fairness, because the laws of nature do impose a restriction on the frequency of heads among the fair coin-tosses.
  (And by the same token, the outcome of a coin-toss is not independent of the condition of its being biased in some way.)


This does not yet show that the trick exemplified by (4) is sufficient to provide for the kind of independence we think fair coin-tosses should have from one another; I will argue that it does below in Section 6.  But this does show that independence is not obviously a killer problem for the idea that the laws of some of our theories might be laws about frequencies.  More importantly, it sets the stage for the sections to follow by giving a sense of how a theory positing laws abut frequencies might be structured and how it might work.

4.  What Would it be Like if There were Laws about Frequencies?
Suppose that some proposition about frequencies were not merely true, but also a law of nature; what difference would this make?  If contemporary philosophical thinking about laws is on the right track, this would make a difference to what explanations are good ones, to what counterfactuals are true, and to what inductive inferences are legitimate.  Let’s consider these differences in turn.


4a.  Counterfactuals
If it is not merely true, but also a law of nature, that P, then P would still have been true under a broad range of counterfactual suppositions.  Not all possible counterfactual suppositions – for P would not still have been true had something logically inconsistent with P been true, for example.  And perhaps P would not still have been true had some of the actual laws of nature not been laws, or had there been some laws that do not hold in the actual world.  But generally speaking, P would still have been true under any counterfactual supposition that is consistent with the lawhood of all and only the actual laws.  None of this should be any different if P is about frequencies.  So if, for example, P is the proposition that half of all tritium atoms decay within 4500 days, then half of all tritium atoms would still have done so even if things had been different otherwise – if there had been different tritium atoms, for instance, or if the initial conditions of the universe had been different in a way that radically changed the way tritium atoms are distributed throughout space.  So, this fact about decay frequencies among tritium atoms is counterfactually independent of such possible differences in the nomically contingent features of our universe.  


This leads to some consequences that might seem strange.  For example, it implies that if Trish the tritium atom, who in fact did not decay within 4500 days of her creation, had done so, then there would have been some other difference that made up for the difference this made to the frequency.  Perhaps Trent the tritium atom, who in fact did decay within 4500 days of his creation, would not have done so; perhaps Trey and Troy the tritium atoms (both of who did decay within 4500 days of their respective creations) would not have existed at all.  There are many such ways in which other things could have been different that would have restored the frequency of within-4500-day decays to ½, and no one of them would necessarily have happened had Trish decayed earlier – but one of them would have done.  This looks a little like some strange kind of magic.


But this is just a special case of a phenomenon that is really very familiar and not at all magical.  There can be a fact to the effect that some quantity must add up to a certain value, which does not specify how this adding-up is to be done in detail, and which is very counterfactually resilient within a given context, though more specific facts about how the total is reached are not.  For example, suppose that our department had its budget fixed by an inflexible dean, whose decisions we have no power to influence.  We might have spent $100 more on toner fluid than we actually did, but then we would have had to spend $100 less somewhere else – perhaps on faculty salaries, perhaps on copier paper, perhaps on maintenance for the departmental espresso machine.  Let’s call a fact of this kind a counterfactual quota.  The example of the departmental budget shows that there is nothing at all unfamiliar about counterfactual quotas.  And the law about the frequency of pre-4500-day tritium-decays is just such a counterfactual quota, which happens to have the status of a law of nature.

It might be objected that we can understand well enough how a dean can impose a budget cap that is counterfactually robust even though the particular way in which we manage to stay under that cap is counterfactually fragile, but it is a different matter with the laws of nature.  For the laws of nature are not like a dean, and to think of them on the model of a dean is to anthropomorphize them unacceptably.  This point is well taken, but it does not show that there is anything especially mysterious about laws that take the form of counterfactual quotas.  For the same worry applies to laws of nature in general:  We have an easy enough time understanding how a human authority (such as a dean) can impose rules or laws on other human beings, but we have a much less clear grasp of what we mean we talk about laws of nature governing physical events.  For example, the dean might make it an absolutely inflexible campus policy that no one may travel faster than 10 mph while on campus, and the laws of nature can forbid any massive particle in the universe to travel at a speed greater than c.  Clearly, different kinds of forbidding are at work here, and it won’t do to say that we can fully understand the latter just by comparing it to the former.  But this fact does not show that there could not be a law of nature imposing a speed limit on all massive particles in the universe.  The point is this:  We have a notion of the laws’ (in some sense) imposing a requirement on the universe which can be met in any of many different ways (e.g., a proton can conform to the law about the speed of light by traveling at one meter per second, or two meters per second, etc.), though we are puzzled by the question of what the laws might be such that they could do this; we also have a notion of a requirement which can be met in any of many different ways taking the special form of a counterfactual quota; there is nothing special about counterfactual quotas that makes it any harder to understand how the laws of nature could (in some sense) impose them as requirements on the universe than it is to understand how the laws could impose requirements on it in the first place.  Counterfactual quota laws, on their face, raise no worries that the very idea of a law of nature itself does not already raise.

But it might be objected that the kind of counterfactual quota law that I am talking about would be especially strange, since if there were laws like these, then there would be strange sorts of dependency between things that should be independent.  For instance, whether any other tritium atoms do or do not exist in the universe, and how long they last before they decay, should not depend in any way on when Trish the tritium atom decays.  But if it is a law that half of all tritium atoms decay within 4500 days of their creation, then had Trish decayed before reaching the age of 4500 days, then something else would have to have been different with respect to at least one of the other tritium atoms.  This looks like a kind of spooky action at a distance.


That phrase aptly captures the intuition at work in this objection, but it also points the way to the reply to it.  If there are laws about frequencies, then these laws are non-local:  They impose requirements on the universe that cannot be satisfied in a point-by-point fashion, but involve global conditions that must be met by the universe as a whole.
  Many distinguished scientists (including Einstein) have claimed that the laws of nature must be local, but the resilient successes of quantum mechanics have by now taught us that we might have to accept the reality of non-local laws.  And even if some local alternative to quantum mechanics eventually proves successful, we have now a plethora of theories that are plainly coherent and which posit non-local laws – e.g., Bohmian mechanics and the GRW theory.  So we should not be prepared to dismiss the possibility of such laws on philosophical grounds.


It is interesting to note that the kind of non-locality that would be introduced by a law that half of all tritium atoms decay within 4500 days is, like the kind of non-locality introduced by quantum mechanics in its violation of the Bell inequalities, in an important sense harmless.  The quantum non-localities cannot be exploited to send a message faster than light, and neither can the non-localities introduced by the law about frequencies:  Even if we could somehow force Trish the tritium atom to decay before 4500 days, nothing would follow from her so doing about any particular tritium atom and when and whether it decays.  So by manipulating the decay-time of one tritium atom, we could not cause anything in particular to happen anywhere else, and so we could not instantaneously transmit any information to anyone.  For similar reasons, it appears that the non-local character of this law about frequencies would not result in any cases of non-local causation, if any version of the counterfactual theory of causation is correct.  For example, consider Lewis’s (1973) version, on which E causally depends on C just in case, had C not occurred, then E would not have occurred either.  Where C is the decay at a certain time of a certain tritium atom, there is no actual E for which this condition holds that is any stronger than that the total pattern of decay-times of tritium atoms conformed to the frequency-1/2 law in the particular way that it did.  (We cannot say that if Trish had not decayed when she did, then Trent would have decayed a bit earlier – because he need not have:  Troy might have decayed earlier instead.  And so on.)  So on Lewis’s view, no actual event involving decay-times of tritium atoms (save the total pattern of tritium-decay events itself) causally depends on when any particular other tritium atom decayed.
  


4b.  Explanation
If it is not merely true, but also a law of nature, that P, then P can play a role in explanations that it would not otherwise be able to play.  For example, if P takes the form of a generalization, then it can play a role in explaining why any particular instance of it is true that it would not otherwise play.  So for example if P has the form of (ALL):

(ALL)
All Fs are Gs

Then it can be properly cited in an explanation of why b, which is an F is also a G:  Given that it is an F, the laws require it to be a G; that’s why it is a G.  By contrast, if it were just a coincidence that (ALL) is true, then it cannot properly be used in this way.  For in that case, the fact that all Fs are Gs it itself constituted, and thus explained, partly by the fact that b is a G, so it cannot in turn be called on to explain this fact.  (Or so, at any rate, says the received wisdom.
)


The same thing should be true if P takes the form of (R%):
(R%)
R% of the Fs are Gs

For example, suppose that P is the proposition that 99% of all quickons decay within one microsecond of their creation.  If P is a law of nature, then it can be cited to explain why a particular quickon q decayed within one microsecond:  The laws of nature require that almost all quickons do that, and so this one did.  Granted, this explanation is not quite as satisfying as the explanation for why b is a G that we saw above:  Here the explanans does not rule out the possibility of the falsity of the explanandum, which it did in the preceding example.  So the explanatory power of a law of the form (R%) is more limited (other things being equal) than that of a law of the form (ALL).  But this does not disqualify propositions of the form (R%) from being laws of nature, any more than it rules out probabilistic laws in general, since no probabilistic law entails the truth of any particular instance.  And the way the explanation works in the case of the law about the frequency of quickon decay is very similar to the way it works in the case of the non-probabilistic law:  In the case of the non-probabilistic law, we see that the laws of nature positively require the truth of the explanandum, and they rule out the nomological possibility of its falsity; in the case of the frequency-law, we see that the laws of nature require something (namely, that almost all quickons decay within one microsecond) in the light of which the explanandum is totally unsurprising, and in light of which it would be very surprising if the explanandum were false.  

Now to vary the example, suppose again that P is the proposition that half of all tritium atoms decay within 4500 days of their creation.  It follows logically from P (via the law of large numbers) that most of the samples of at least 100 tritium atoms are such that about half of their members decay within 4500 days.  Now, suppose that we have before us a simple of more than 100 tritium atoms, and we observe that almost exactly half of them decay within 4500 days of their creation.  Why did almost exactly half of the tritium atoms in our sample decay within 4500 days?  Here we can say the same thing we did in the quickon case:  The laws of nature require that almost all such samples will have about half of their members decay within 4500 days, and so, ours did.  Once again, the explanans does not entail the explanandum.  But once again, it renders the explanandum totally unsurprising in the light of requirements imposed by the laws of nature; what’s more, these same requirements would make it extremely surprising indeed if the explanandum were not true. 

Of course, the explanation here is defeasible in the sense that there might be additional facts which, when added to the explanandum, undermine the explanation.  For example, suppose that all of the atoms in our sample were created via process X; it might also be a law of nature that only 1% of the tritium atoms created via process X decay within 4500 days.  If this were so, and we took account of it, we would see that the laws of nature in fact impose requirements that make our explanandum (viz., that about half of the atoms in our sample decayed within 4500 days) very surprising, wrecking our explanation.  However, if we also happen to know that there are no such additional laws, we can be justly confident in our explanation.  This illustrates the importance of the availability of the treatment of independence presented in section 2.

By contrast, if it is simply a brute fact that R% of the Fs are Gs, then this fact by itself cannot be used to explain why any particular F is G or why any particular sample of Fs is about R% Gs, any more than its being a brute fact that all Fs are Gs could be used to explain why some particular F is a G.  This is the crucial difference between a law about frequencies and a mere nomologically contingent fact about frequencies:  Only the former states a condition that is explanatory potent because nomologically imposed on the universe.  In this respect, the difference between laws about frequencies and mere facts about frequencies is exactly analogous to that between non-probabilistic laws of nature and mere Humean uniformities.

4c.  Induction

According to a standard view, a generalization can be confirmed by its instances only if it is “lawlike.”  There are different ways of working this idea out; according to one, a generalization is genuinely inductively confirmed by the discovery of instances of it only if it is in fact a law; on another, a generalization is so confirmed only relative to a set of background knowledge according to which the generalization might be a law.  One way to capture the common idea here is to say that whenever instances of a regularity R inductively confirm R itself, they do so only by inductively confirming the hypothesis that R is a law of nature; they do not to any degree inductively confirm the hypothesis that R is an accidental Humean uniformity.


A caveat:  The hypothesis that, as a matter of sheer accident, all of the coins in my pocket are silver can indeed be confirmed by the observation that one of these coins is silver, in the sense that this observation can raise the (personal or subjective) probability of that hypothesis.  It can do this simply by eliminating one of the heretofore epistemically possible ways in which the hypothesis might have been false.  It can do this even if it does not at all boost the probability that any of the other coins in my pocket are silver.  Following Ken Gemes (1998), I distinguish this sort of confirmation (“mere content cutting”) from inductive confirmation proper, which occurs when observation of one or more instances of a generalization raise the probability of the generalization while also raising the probability of other instances of it.  So the claim under consideration is that for any regularity R, the hypothesis that R is a law of nature can in principle be inductively confirmed, while the hypothesis that R is a nomologically contingent regularity can be confirmed only by mere content-cutting.


To put it this way is too strong, though.  As John Foster (2004, 46-47) has recently argued, the most we should say here is that in order to inductively confirm a regularity R, we must inductively confirm either the hypothesis that R itself is a law of nature, or the hypothesis that R is a consequence of some laws of nature together with some prevailing contingent conditions (in which the laws are not idle—let this qualification be understood henceforth).  Thus, the hypothesis that heavy objects fall with approximately constant acceleration near the surface of the earth is inductively confirmable, even though it is not itself a law of nature but only a consequence of Newton’s laws together with the prevailing condition that the earth is of constant (and very large) size and mass and that its gravitational attraction swamps all other forces acting on heavy objects falling near its surface.  Taking Foster’s point, we should instead say that the hypothesis that R is an accidental uniformity with no nomological explanation cannot be inductively confirmed by instances of it, though the hypothesis that R is true, either as a matter of natural law, or as a consequence of laws together with prevailing general conditions can be.


If all of this is right, then the same thing should apply to regularities about frequencies.  The analogy of inductive confirmation for universal hypotheses as described above for statistical regularities is for the discovery that a frequency (or frequencies) within a given sample approximately satisfy a given statistical regularity raises the probability of the regularity itself while raising the probability that other samples will also approximately satisfy it.  If S is some statistical regularity, then the hypothesis that S is either a law of nature or a consequence of laws together with prevailing conditions is inductively confirmable in this way, whereas that S is an accidental fact with no nomological explanation is not. 

5.  Could There Be Such Laws?
Having seen what it would take for there to be laws about frequencies, can we say whether it is possible for there to be such things?  We have noted a couple of possible worries:  Laws about frequencies would be non-local laws, and they would be capable of explaining other propositions that they do not logically entail.  But neither of these is unique to laws about frequencies:  The laws of quantum theory are similarly non-local, and any probabilistic laws would be capable of explaining without entailing.  So neither of these worries shows that laws about frequencies are impossible; they show at most that laws about frequencies would be different in important ways from the deterministic laws of classical physics.  


This does not amount to a positive argument that there could be such laws.  What would be required in order to give such an argument is unclear; it seems that since the idea of a law about frequencies is at least logically consistent and conceptually coherent, we should presume that they are possible unless and until we find some reason to think otherwise.  But it might help to notice that on each of the leading philosophical approaches to lawhood, there seems to be every reason to think that laws about frequencies are at least possible.


Consider first the universals approach to laws developed by Armstrong (1983), Dretske (1977) and Tooley (1977).  These authors differ on many of the details, but the core idea of their approach is that laws of nature are second-order relations among universals which entail certain relations of coinstantiation among their instances.  The simplest case of a law is a state of affairs of the form N(F,G), where F and G are universals, and N is a second-order universal which has the property that, for any two first-order universals U and V, N(U,V) entails that every instance of U is an instance of V (but the converse entailment does not hold).  These authors recognize that more complex forms of laws must be recognized as well.  For example, Armstrong (1983, 128-129) recognizes that in order to accommodate probabilistic laws, he needs to admit another second-order relation as well, which he writes “(Pr:P) (F,G)” which holds between two universals F and G whenever each instance of F has an objective probability of P  of being an instance of G.  Tooley (1977, 48-49) holds that there are multiple second-order relations that first-order relations can stand in, which entail different relations among their extensions; for example, there is a relation such that when F stands in it to G, no F is a G, and there is a three-term relation such that when F stands in it to G and H, every F is either a G or an H, and so forth. What is common to all of these lawmaking higher-order relations is that when a pair (or n-tuple) of universals is related by one of them, this entails (but is not entailed by) a certain relation among the sets of particulars that instantiate the universals.  Within this framework, it is perfectly natural to add that there may be relations that entail frequency relations among universals.  For example, perhaps there are relations Nr such that Nr(F,G) entails (but is not entailed by) the proposition that the frequency of Gs among the Fs is r.  At any rate, it is not clear what difference there might be between such relations and the ones that Armstrong, Dretske and Tooley affirm that would justify us in thinking that the latter are possibilities while the former are not.


Consider next the scientific essentialist approach to laws, pioneered by Chris Swoyer (1982) and developed by Brian Elis (2001) and Alexander Bird (2007) among others.  According to this view, laws of nature are relations among kinds and properties that entail regularities among their instances, and which are essential to the identities of those kinds and properties.  Swoyer, Ellis and Bird all argue that we must think of kinds and properties as having essential features, and that the causal powers that a property or kind confers on its instances is an excellent candidate for the kind of feature that might be essential to that property or kind; for example, any property that in any possible world failed to confer the power to dissolve salt on its instances just could not qualify as water, so it is part of the essence of water that it confers this power on its instances.  Suppose that all of this is right:  Why could there not also be a property F whose essence includes the feature of being such that R% of its instances are also instances of G?  Or whose essence includes some more complex constraint on frequencies, e.g. that the frequency with which its members are G is equal to the frequency with which Hs are J?  Note that the question before us just now is not whether we have any reason to think that any actual properties do have such frequency-involving essences, but only whether it is possible for there to be such properties.  For if this is possible, then if the essentialist approach to laws is correct, then it is possible for there to be laws about frequencies.  And once we have agreed that natural properties and kinds do have essential features, and that these essential features can entail regularities involving their extensions, it is hard to see any reason in principle why such frequency-involving essences should be excluded.


Turn now to non-reductive realist approaches to laws of nature, such as that of John Carroll (1994).  On Carroll’s view, lawhood is a primitive that we should not expect to analyze or reduce in terms of anything more basic.  The laws of nature are a subset of the true generalizations; which generalizations are laws fails to supervene on the non-nomic base of facts; the generalizations that are laws have a modal character which makes them counterfactually robust, explanatory powerful, and inductively confirmable.  As we have seen, there appears to be no reason why propositions about frequencies should not have these three characteristics which distinguish the laws.  And if there are laws about frequencies, there is no reason to think that they could fail to supervene on the non-nomic base, just as garden-variety universal laws fail to do.
  If lawhood is a primitive status that some propositions have, which fails to supervene on the on-nomic base and carries with it the modal character typical of laws, then it seems clear that propositions about frequencies could be among the laws.  Similarly, Marc Lange (2009) defends a view of laws according to which to be a law just is to belong to a set of proposition possessing a very strong kind of counterfactual resilience.  Again, there is no reason to think it impossible for truths about frequencies to be among those which have the counterfactual resilience characteristic of laws.  So on this view, too, it is possible for there to be laws about frequencies.


Finally, consider David Lewis’s (1986; 1994) best-system analysis of laws of nature.  According to it, the laws of nature are those generalizations that belong to the best system of truths about the Humean base.  The Humean base is the totality of non-nomic, non-modal, occurrent fact in our world (Lewis characterizes it as the spatiotemporal distribution of local qualities), and the best system of truths about it is the one that provides the best summary of it, by striking the best balance between information content and simplicity.  Lewis puts this analysis forward as an account of non-probabilistic laws of nature; in order to account for probabilistic laws as well (which he takes to be laws about chances), he offers a more complicated analysis:  The systems in the running for best are now not just systems of truths about the Humean base; they also include conditionals that say how a certain (as-of-yet uninterpreted) time-dependent probability distribution depends on the history of the universe up to a given time.  (These systems are subject to the requirement that they must imply that at no time does any proposition that belongs to a system have a probability of less than one.)  The best system is now the one that strikes the best balance between information content, simplicity, and “fit” which is defined as a measure of how closely the probabilities according to a system match the actual long-run relative frequencies.

My purpose here is not to criticize this account, but simply to point out that a Lewisian could give probabilistic laws a much simpler treatment.  For on the original version of the best-system analysis – in which “fit” plays no role – it is possible for there to be laws about frequencies.  For example, adding the proposition that fair coin-tosses land head-up half of the time to a system might greatly improve its information content while reducing its simplicity very little; in fact, it might actually improve the simplicity of the system, if it turns out that many different frequencies fit a relatively simple pattern that can be captured by a more general regularity about frequencies (e.g., a quantum mechanical law).  And if so, then it might merit a place in the best system.  Moreover, even if the frequency of heads among fair coin-tosses is not exactly ½, it might still be the case that the proposition that this lies within a certain narrow range centered on ½ is true and fits in with many other such frequency-constraining regularities to form a simple and informative pattern.  In short, there is no reason to think that propositions about frequencies could not belong to the best system, as Lewis originally characterized it before modifying his account to deal with chances.  And if they do, then by Lewisian lights, there are laws about frequencies.

Summing up:  If any of the leading philosophical approaches to laws of nature are on the right track, then there could be laws about frequencies.

6.  The Role Played by Laws about Frequencies in Scientific Practice
If a scientist were to accept some hypothesis that posts laws about frequencies, what difference would this make to what she should expect to happen?  In order to investigate this question, let’s focus on a couple of particular examples.


6a.  The Case of Fran
Fran is a scientist who accepts a version of the standard theory of games of chance, in which all of the probabilistic laws take the form of laws about frequencies, and assumptions about independence are dealt with in the manner of Section 3.  So for example, Fran believes that there is a certain type of event called a fair coin-toss which has two possible outcomes, heads and tails, and she believes that (CT) is a law of nature:

(CT)
Fair coin-tosses result in heads with a frequency of ½.

Since she believes that the outcomes of fair coin-tosses are independent of one another – and of everything not causally downstream from them – she also believes that there is no law of nature of the form:

(X)
Fair coin tosses with property Z result in heads with a frequency of q

for any Z that supervenes on everything that is not causally downstream from the coin toss itself, and for any q ( ½.  (She is happy to admit that some proposition of the form (X) may be true – she denies only that any such proposition is a law.)  Fran’s theory also implies that there is no law of the form:

(X’)
Fair coin tosses with property Z have an objective probability of q of resulting in heads

with the same conditions on Z and q, on any plausible interpretation of “objective probability.”


Let us suppose that before coming to accept her theory of games of chance, Fran had a credence function Cr, and that her background knowledge, excluding her theory of games of chance, is B.  Let us call her theory of games of chance TFran.  So her current degrees of belief are given by the function Cr( - | TFran & B).


Now let’s consider what Fran’s degrees of belief in various possible future occurrence should be.  Suppose that Fran is set to watch a fair coin-toss.  To what degree should she believe that this coin toss will result in heads?  At this point we can draw on a familiar principle of so-called direct inference:

(PDI)
If you know (or fully believe) that b is a member of class U, and you know (or fully believe) that the fraction of members of U that are members of V is r, and you have no other information that is relevant to whether b in particular is a member of V and that is not trumped by the information that it is a member of U, then you should believe to degree r that b is a member of V.

I will not attempt to justify (PDI) here except to note that it is overwhelmingly plausible on its face.  (For an illuminating discussion of direct inference and its history, see McGrew (2001).)

Does (PDI) principle apply to Fran?  Well, she does fully believe that the coin-toss she is watching is a member of a class one-half of whose members result in heads – for she believes that it is a law of nature that one-half of all fair coin-tosses result in heads, from which it follows that one-half of all fair coin-tosses do result in heads.  But does she meet the second clause of the antecedent – does she have no other information that is relevant to whether this coin-toss in particular will result in heads, which is not trumped by the information that it is a fair coin-toss?  Yes, she does meet this requirement.  This may not be obvious at first; it might seem that for all we know, Fran’s background knowledge B might include some additional information relevant to whether this particular coin-toss will land heads or tails.

But in fact, B could not contain any such additional information, unless Fran has some unusual source of information about the future (such as a crystal ball or a time machine).  For if she has no such unusual source of intelligence from the future, then her contingent knowledge about the future must be based on inductive inferences from empirical observations.  But now, suppose that she had additional information that is relevant to the outcome of this coin-toss, in a way that is not trumped by the information that the toss is fair.  Then there is some property
 Z such that she knows that this coin-toss has Z, such that she knows that a fair coin-toss with property Z is more (or less) likely to result in heads than one that does not.  So, either she knows that coin-tosses with property Z yield heads with a frequency different from ½, or else she knows that such coin-tosses have some kind of objective probability of landing heads that is different from ½.  How has she come by this knowledge?  Not by exhaustively examining all of the fair coin-tosses that have property Z, for ex hypothesi at least one of those is still in the future, and Fran has no crystal ball.  So she must have come by this knowledge by means of induction.
  But as we saw back in Section 3c, such a statistical or probabilistic regularity is inductively confirmable only by means of inductively confirming the hypothesis that the regularity is a law of nature, or that it is a consequence of a law together with some standing condition.  In either case, Fran must know (or at least believe) that there is some law of the form (X) or (X’).
   But this is contrary to what we have stipulated about Fran’s beliefs:  She fully believes the theory TFran, which states that there is no law of either form.  


Summing up:  Unless Fran has access to something like a crystal ball or a time machine, if she fully believes her theory TFran, then she can have no information that is relevant to whether the coin-toss she is about to witness will result in heads which is not trumped by the information that that toss is fair.  So, by (PDI), she should believe to degree ½ that the coin-toss will result in heads:


Cr(Heads on the next toss |TFran & B) = ½ 


Now to make things slightly more complicated, suppose that Fran is about to witness a series of n fair coin-tosses, and is wondering to what degree she should believe that there will be at least one heads among the results.  Here is one way to find the answer:  First, for each i in {1, 2, … n}, let Hi be the proposition that the ith of the next n fair coin-tosses will result in heads, and let O be the proposition that at least one of them will result in heads, so that O is equivalent to H1 v H2 v … v Hn.  Also, let Ui be the proposition that none of the first i of the next n fair coin-tosses result in heads.  Then:

Cr(O| TFran & B)  = 1 – Cr(~O| TFran & B) 

= 1 – Cr(~H1 & ~H2 & … & ~Hn| TFran & B)

= 1 – Cr(~H1| TFran & B)Cr(~H2|~H1 & TFran & B)Cr(~H3|~H2 & ~H1 & TFran &B)….

= 1 - (ni=1 Cr(~Hi|Ui-1 & TFran & B)

Now consider a term of the form Cr(~Hi | Ui-1 & TFran & B):  What value should it have?  Well, note that Cr(~Hi | TFran & B) = ½.  To get from this to the term we are interested in, we simply conditionalize on Ui-1.  How should adding this additional information about the outcomes of the first i-1 coin-tosses change Fran’s credence that the ith one will result in heads?  Answer:  Not at all.  It should change this credence only if Fran is aware, or at least non-negligibly confident, of some feature of the next i coin tosses that makes the ith toss either more or less likely to yield heads if the first i-1 tosses fall out one way rather than another.  It could not be that she just directly knows of these very coin-tosses that this is so, since that would require her to have advance intelligence from the future.  So it must be that she is confident that they have some qualitative feature, and that this qualitative feature makes it more likely for the ith toss to come up heads if the first i-1 tosses come out one way rather than another.  But this means she is aware of (or at least, non-negligibly confident in) some regularity about coin tosses, which implies that for some condition Y which supervenes on the causal past of the ith coin-toss:

Fr(Hi |Y & TFran & B) = q ( ½

or:  Pr(Hi |Y & TFran & B) = q ( ½ (for some kind of objective probability Pr distinct from actual frequencies)

Her awareness or confidence in this regularity must be based on inductive reasoning, unless she has access to strange sources of information about the future.  So, in the light of what we saw above in Section 3c, she must be confident in the existence of some law that implies one of the above regularities (perhaps with the help of some standing, nomically contingent conditions).  And this contradicts our stipulation that she fully believes TFran and TFran rules out the existence of any such law.
  Therefore, conditionalizing on Ui-1 should make no difference to the value of Cr(~Hi | TFran & B):

Cr(~Hi | Ui-1 & TFran & B) = ½

and so:

Cr(O| TFran & B)  = 1 - (ni=1 Cr(~Hi | Ui-1 & TFran & B)

= 1 - 1/2n   
Fran should believe to degree 1 – ½n that the next n coin-tosses will include at least one heads result.  She should be quite confident (though less than fully certain) that there will be at least one heads in the next ten fair coin-tosses.


There is nothing special here about coin-tosses; these results generalize as follows:

Whenever Fran’s theory implies that:

· It is a law that F-type events have result G with frequency p;

· There is no law of the form “F-type events with property H have result G with frequency q” where H supervenes on what is not causally downstream from the F-type event in question an q ( p;

· There is no law of the form “F-type events with property H have result G with objective probability q” where H supervenes on what is not causally downstream from the F-type event in question an q ( p;

then unless Fran has access to some unusual source of information about the future:

· her  degree of belief that any given set of n future F-type events will have result G should be pn;

· her degree of belief that at least one of them will have result G should be 1 – (1 – p)n;

· if either of these figures is very close to 1, then she should be very confident (though not certain) that the result in question will occur.

· Moreover, if and when it does occur, she will be able to give a good explanation of it, since she will be able to cite laws of nature that entail something that makes it unsurprising that it occurred, and would make it very surprising had it not occurred.  This will not be the strongest sort of nomological explanation we ever find, since its explanans will not entail its explanandum; but it will be a good explanation nonetheless.


6b.  The Case of Starr
We have been assuming that Fran accepts a version of the standard theory of games of chance in which the laws about probabilities have been replaced by laws about frequencies.  Fran’s theory is an odd one:  It implies, for example, that it is nomologically necessary that the number of fair coin-tosses in the history of the universe is even.  Fran’s colleague Starr holds a similar theory that lacks this odd consequence:  It is like Fran’s theory, but with *-frequencies in place of frequencies.  So Starr’s theory TStarr says that (CT1*) is a law of nature:

(CT1*)

Fair coin-tosses result in heads with a *-frequency of ½.

It also says that there is no law of nature of the form:

(X*)
Fair coin-tosses with property Z result in heads with a *-frequency of q

for any Z that supervenes on everything that is not causally downstream from the coin toss itself, and for any q ( ½.  It also denies that there is any law of the form:

(X*’)
Fair coin-tosses with property Z have an objective probability of q of resulting in heads

with the same conditions on Z and q.  As we saw above in Section 2, laws such as (CT*) place no restrictions at all on the cardinality of the fair coin-tosses, so in that respect TStarr is more plausible than TFran.

Can we give an argument that mirrors the argument we just gave concerning Fran, reaching an analogous conclusion for Starr?  The first thing this would require would be a generalization of (PDI) which applies to beliefs about *-frequencies rather than frequencies: 

(PDI*)
If you know (or fully believe) that b is a member of class U, and you know (or fully believe) that the members of U that are members of V with *-frequency r, and you have no other information that is relevant to whether b in particular is a member of V and that is not trumped by the information that it is a member of U, then you should believe to degree r that b is a member of V.

(PDI*) is strictly stronger than (PDI), since its antecedent is strictly weaker than (PDI)’s antecedent.  So we cannot justify (PDI*) by deriving it from (PDI).  However, the considerations that make (PDI) so plausible also make (PDI*) similarly plausible.  Suppose that I know that members of U are in V with *-frequency r.  Then (by the definition of *-frequency) I know that the frequency of V-membership within U is in the range (r – 1/N, r + 1/N) where N is the cardinality of U.  If U’s cardinality is infinite, then this means that the frequency of V-membership within U is equal to r (where this frequency is defined as a limit of the frequencies within a growing-ball sequence, as defined above in Section 2).  If U’s cardinality is finite, then what I know is that the frequency of V-membership in U is either exactly r, or as close to r as U’s cardinality will allow and either slightly larger than r or slightly smaller.  But I do not know whether it is larger or smaller.  And if I had any information that made it more likely that this frequency was slightly larger than r than that it was slightly smaller (or vice versa), then this would be information relevant to whether b is a member of V that was0 not trumped by the information that b is a member of U, so the conditions in the antecedent of (PDI*) imply that I have no such information.  In this case, it seems obvious that the only rational degree of belief I could have in the proposition that b is a member of V is r.

So we can plausibly affirm (PDI*).  With this principle in hand, the rest of the argument we gave about Fran carries through for Starr; we just need to substitute “*-frequency” for “frequency” throughout.  So long as Starr has no access to weird sources of information from the future, she meets the conditions spelled out in the antecedent of (PDI*), because she fully believes that fair coin-tosses result in heads with *-frequency ½, and she has no information relevant to whether the next coin-toss will result in heads which is not trumped by the information that it is fair; she has no such information for the same reason Fran has none – because in order to have it, she would either need strange intelligence from the future, or else she must have gained it by inductive reasoning, in which case she must have learned of some law of nature to the effect that fair coin-tosses under certain conditions land heads with some *-frequency other than ½, contradicting our assumption that Starr’s theory entails that there is no law of form (X*).  So (PDI*) applies, and it tells us that Starr should believe that the next coin-toss will result in heads to degree ½.   Similarly, Starr’s degree of belief that the ith of the next n fair coin-tosses should not be affected by conditionalizing on information about how the next i-1 coin-tosses turn out, since (unless she has a crystal ball or a time machine) this would again require her to have inductive knowledge of a form that she cannot have given what we have stipulated about her:


Cr(Hi|Ui-1 & TStarr & B) = Cr(Hi | TStarr & B) = ½

so by the same calculation given for the case of Fran, it follows that:

Cr(O| TStarr & B)  = 1 - (ni=1 Cr(~Hi | Ui-1 & TStarr & B)

= 1 - 1/2n
Again, there is nothing special about coin-tosses here, and the result generalize:

Whenever Starr’s theory implies that:

· It is a law that F-type events have result G with *-frequency p;

· There is no law of the form “F-type events with property H have result G with *-frequency q” where H supervenes on what is not causally downstream from the F-type event in question an q ( p;

· There is no law of the form “F-type events with property H have result G with objective probability q” where H supervenes on what is not causally downstream from the F-type event in question an q ( p;

then unless Starr has access to some unusual source of information about the future:

· her  degree of belief that any given set of n future F-type events will have result G should be pn;

· her degree of belief that at least one of them will have result G should be 1 – (1 – p)n;

· if either of these figures is very close to 1, then she should be very confident (though not certain) that the result in question will occur.

· Moreover, if and when it does occur, she will be able to give a good explanation of it, since she will be able to cite laws of nature that entail something that makes it unsurprising that it occurred, and would make it very surprising had it not occurred.  This will not be the strongest sort of nomological explanation we ever find, since its explanans will not entail its explanandum; but it will be a good explanation nonetheless.


6c.  The Case of Chas
Now, for the sake of comparison, let us consider Fran’s and Starr’s colleague Chas, who accepts a version of the standard theory of games of chance that is more like the one philosophers are comfortable with:  It interprets all the probability laws in this theory as laws about objective, single-case probabilities – chances, to use the standard terminology.  Like most philosophers who work on this topic, Chas believes that chances are objective, and that they are not definable as actual frequencies; he believes that they obey Lewis’s Principal Principle
; he is cautiously skeptical about the possibility of reductively analyzing them in terms of anything about the actual, occurrent history of the world; he holds that hypotheses that attribute them have a certain amount of explanatory power – a hypothesis according to which event E had a chance x is a good explanation of E to the extent that x is high. 
Unless Chas has access to unusual sources of information about the future, the Principal Principle implies that his degree of belief that the next fair coin-toss will result in heads is ½, and his degree of belief that there will be at least one heads among the next ten fair coin-tosses should be 1 – ½10.
  More generally:  Whenever F is a type of event that has a chance of p of resulting in G, and Chas lacks any special intelligence from the future, Chas’s degree of belief that the next n F-type events will result in G should be pn, and his degree of belief that there will be at least one G among the next n F-type events should be 1 – (1 - p)n.  Whenever one of these is very high, Chas should be very confident (though not completely certain) in predicting that the corresponding outcome will occur, and if and when it does occur, Chas will be in a position to offer an excellent explanation of why it did, though it will be one in which the explanans fails to entail the explanandum.  In all these particulars, Chas and Starr and Fran are in agreement and on a par.


6d.  The Happy Concord
So, Chas and Starr and Fran are all prepared to make the same predictions and have the same degrees of expectation concerning the future uncertain events that their theories posit laws about.  They are also prepared to give similarly-powerful explanations of whatever outcomes do in fact occur.  What is more, we are now in a position to see that empirical evidence will impact their three respective theories in exactly the same way.   If we let T be any one of the theories TFran, TStarr or TChas:


Cr(next n Fs result in G|T) = pn

Cr(at least one of the next Fs results in G|T) = 1 – (1 - p)n
These are just the likelihoods for the theory T and the observations (respectively) that n Fs are G, or that at least one G occurs in a run of n Fs, relative to the theory T.  For a Bayesian, or any advocate of the Likelihood Principle, this completely determines the evidential impact of such observations on such theories:  The greater these credences, the more positive the evidential impact.  Furthermore, as we have seen, someone who accepts any of these three theories is in a position to give an excellent (though not best-of-all-possible) explanation for such observations, when these likelihoods are high.  So on an explanationist conception of evidence, again, such evidence supports such a theory to the extent that these likelihoods are high.  Thus, on either a Bayesian, a Likelihoodist, or an explanationist account of evidence, any sequence of outcomes of F-type events will have exactly the same evidential impact on a theory that posits laws about chances as it will on a corresponding theory that posits laws about frequencies or laws about *-frequencies instead.  (Here, the “corresponding” theory is one that bears the same relation to the chance-positing theory as Fran’s or Starr’s theories bear to Chas’s:  Objective probabilities are everywhere replaced by laws about frequencies (or *-frequencies), and probabilistic independence relations are replaced by assumptions of the absence of laws, in the manner developed in Section 3.)


This completes the argument sketched at the end of Section 1:  We are now in a position to see that for any theory positing probabilistic laws, we can construct a corresponding theory that posits some laws about frequencies (and denies the existence of some further laws about frequencies), which issues exactly the same predictions, licenses exactly the same degrees of confidence about future “chancy” events, is able to offer similarly powerful explanations of particular possible outcomes, and is confirmed or disconfirmed by empirical evidence in exactly the same way.  If there is any difference between the “original” chance-positing theory and the one that posts laws about frequencies instead, then this is a difference that makes no difference to the practice of science.  The theory positing frequency-laws would serve just as well as the chance-positing theory for all scientific purposes.

7.  Nomic Frequentism
These reflections make it interesting to consider the possibility of interpreting – or perhaps, reconstructing – the probabilistic laws found in scientific theories as laws about frequencies.  I will call this interpretation nomic frequentism.  One might give different interpretations of the probabilistic laws figuring in different theories (quantum mechanics, statistical mechanics, evolutionary biology, etc.), and so one might be a nomic frequentist about one theory or branch of science, but not about another.  We might define weak nomic frequentism as the thesis that there are some laws about frequencies, and strong nomic frequentism as the thesis that all of the probabilistic laws of nature posited by scientific theories are properly interpreted (or reconstructed) as laws about frequencies.


Nomic frequentism is, of course, a form of frequentism.  But it is importantly different from other frequentist views, and these differences enable it to get around all of the most common objections to frequentism.  Since it can be easy to fail to see why nomic frequentism is importantly different form more familiar forms of frequentism, it may be worthwhile to survey the differences.  


First of all, frequentism is usually understood as a deeply empiricist-reductionist, or Humean, approach to objective probabilities and probabilistic laws; on one common view, the frequentist theory is to objective probabilities what the regularity theory of laws is to laws of nature.  But this is certainly not true of nomic frequentism.  As we saw in Section 4, nomic frequentism can be combined with any of the leading views of laws of nature – Humean or non-Humean, necessitarian or contingentist.  It core idea is that a probabilistic law of nature is a law of nature about frequencies; nomic frequentism as such is not committed to any particular view of what laws are.  It seems to me that its peculiar virtues should make it equally attractive to advocates of all of the different philosophical approaches to lawhood.
Next, it is important to note that nomic frequentism does not identify chances, or objective probabilities, with frequencies.  It dispenses with the idea of a (single case) objective probability of chance altogether; it is an interpretation of probabilistic laws that does not interpret them as laws about anything that might helpfully be called an individual probability.  For example, if the actual frequency of heads among fair coin-tosses is 0.500012, then nomic frequentism does not imply that such coin-tosses have a chance, or a probability, of 0.500012 of landing heads.  It is perfectly possible that this frequency is equal to 0.500012 as a matter of nomologically contingent fact, while it is a law of nature that this frequency lies within some small interval centered on 0.5.  So nomic frequentism allows for the possibility that there are probabilistic laws governing types of events, within which the actual frequencies differ from the figures occurring in those laws.  The most familiar way of sophisticating a frequentist account of probabilities in order to allow for this frequency-variance is to interpret probabilities as the frequencies that would occur, hypothetically, in an infinitely long sequence of trials.  Such hypothetical-frequentist accounts face the problem of saying what grounds the counterfactual conditional that if there were an infinite sequence of coin-tosses, then in the limit the frequency would converge to ½.  Nomic frequentism has a solution:  What grounds this frequency is a law of nature that requires this frequency to be (or to be close to) ½; moreover, the availability of this law makes it unnecessary to resort to hypothetical infinite sequences in the first place.


In the remainder of this section, I will make a case for nomic frequentism as a viable interpretation of probabilistic laws.  First, I will review the most prominent objections to frequentist accounts of probability in general, and show how nomic frequentism is immune to them all.  Then I will consider some special objections against nomic frequentism in particular.  Finally, I will describe what I see as the most important distinctive virtues of nomic frequentism.


7a.  Problems for Frequentism in General
(i)  The Problem of the Reference Class

If objective probabilities are really frequencies, then they are well-defined only relative to a  reference class.  There is no such thing as the frequency of heads; there is only the frequency of heads among tosses of 20th century British coins, the frequency of heads among tosses of this particular coin, the frequency of heads among coin-tosses that begin American football games, and so on.  So if I want to know what the probability of getting heads on the next toss of this coin is, then I need to specify a reference class.  But which reference class is the right one to use?  How can we give a principled, non-arbitrary, and informative answer to this question?


For nomic frequentism, this worry does not even arise.  Again, nomic frequentism is not really a theory about what probabilities are – it sis an interpretation of probabilistic laws.  It interprets such laws as laws about frequencies.  Each frequency is tied to a particular reference class; in order to know which frequency we are talking about, we have to know which reference class that frequency is defined relative to.  The laws about frequencies themselves specify which frequencies they are about, and so they pick out the reference classes.  For example, if it is a law that fair coin-tosses yield heads with a frequency of ½, then the frequency in question is the frequency of heads within fair coin-tosses, and the reference class is the class of coin-tosses.  


There will still be the problem of how we know which reference class is the one that appears in some law.  From the evidence available to us, it might seem evident that there is some law of the form “Coin-tosses in class K land heads with frequency ½,” but far less clear which class K should be.  But this is an epistemic problem, and it is just a special case of the problem of making inductive inferences from evidence that is more ambiguous than we might hope.  For example, it might be very clear from the evidence available to us that there is some causal regularity of the form “Exposure to factor F raises the risk of legionnaire’s disease,” where we know that F is some factor present in a certain hotel, without its being clear which factor F is.  The case under consideration is not essentially different.  So there is no special problem for nomic frequentism here.


(ii)  The Problem of the Single Case
Suppose that I want to know what the probability that this coin will land heads on its next flipping – not what the probability of heads is among coins that are like this one in one respect or another.  Or suppose that I want to know what the probability is that there will be an earthquake along the San Andreas fault this year.  Frequentism seems unable to give a good answer.  Nomic frequentism seems to fare no better.


This is true, but so what?  Why should we think that there is any such thing as an objective probability about a single case such as this?  The best argument to give in reply to this question would be that scientists have been successful at finding out what many such single-case probabilities are – if only that were true.  But in fact, whenever scientists (or scientific theories) issue estimates of single-case probabilities, these are based on qualitative features
 of the event in question, and on general knowledge about events of that have those features.  And such estimates are tested and confirmed, of course, only by seeing how well they match the relative frequencies of outcomes within certain kinds of events.  So it is not at all clear that any such estimates should really be understood as estimates of single-case probabilities rather than estimates of frequencies within some relevant class.


There is also an epistemic problem that sometimes goes by the name of “the problem of the single case.”  Suppose that I know that Jones lives in Jonesboro, than Jones is a Knight of Knute, that 50% of the residents of Jonesboro are Lutheran, and that 90% of the Knights of Knute are Lutheran.  To what degree, then, should I believe that Jones is a Lutheran?  This is a tough problem.  But why should we expect there to be any general answer?  If the information just mentioned is really all of the remotely relevant information that I have about Jones, then perhaps there is just no fact of the matter about how confident I should be that Jones is a Lutheran.

To bring the problem closer to home:  Suppose that I believe that it is a law of nature that 90% of Fs are G, and that it is a law of nature that 10% of Hs are G, but I know of no law of nature of the form “r% of things that are both F and H are G.”  Now suppose that I know that b is both an F and an H, and I wonder whether b is also a G, and I have no other information that is in any way relevant.  Note that the principle of direct inference PDI does not apply here:  There are no classes U and V such that its antecedent is satisfied.  I do know that b is an F and that 90% of Fs are G, but it is not the case that I have no other information relevant to whether b is a G that is not trumped by the information that b is a F:  For I also know that b is an H, and that only 10% of Hs are G – and this information is not trumped by the information that b is an F, since I do not know that Fs that are Hs are no more likely to be G than Fs in general are.  So, in this case, to what degree should I believe that b is an H?  Well, perhaps there is no answer here:  I may be in a state of information in which the canons of rationality cannot give me any very specific guidance.  Unfortunate me!  In any event, even if there is a right answer here, it is not clear why we should expect that answer to be delivered by a theory of probabilistic laws of nature, rather than (say) by a theory of epistemic rationality.

(iii)  The Problem of Defining a ‘Collective’
One of the most influential frequentist interpretations of probability has been von Mises’ interpretation.  On von Mises’s frequentism, a probability is defined as a relative frequency within a collective; a collective is defined as a long sequence that is random.
  This raises the problem of how the frequentist should define a random sequence.  Von Mises’s own solution to this problem did not work; other solutions have fared much better, though some worries remain.  (See Gillies 2000, 105-109.)

An interesting feature of nomic frequentism is that it can bypass this whole problem:  As we saw in Section 2, a law about frequencies can specify how the limiting frequency it concerns is to be defined, and it is not difficult to find a way of specifying this limiting frequency (e.g., in terms of limits within growing-ball sequences) that seems adequate for purposes of interpreting a probabilistic law. 

(iv)  The Problem of Frequency Tolerance
It is a very common intuition that it might be a law of nature that every F has a probability of p of being a G, even if the actual frequency of Gs among the Fs differs from p.  This intuition – the intuition that probabilistic laws exhibit frequency tolerance – is often thought to be fatal to any version of frequentism.


Let us distinguish two kind of frequency tolerance.  Weak frequency tolerance is the thesis that if it is a law that every F has a probability of p of being a G, then the actual frequency of Gs among the Fs can differ from p by at least a little if there are finitely many Fs – though as the number of Fs increases, the range within which this variation is possible shrinks.  It is plausible that for many people moved by the intuition of frequency tolerance, this is really the most plausible version of the thesis:  If you only flip a fair coin a few times, then you should not be so confident that it will lands heads exactly half of the time, but as you keep flipping it more and more, the frequency of heads will eventually get closer and closer and closer to ½.  By contrast, strong frequency tolerance is the thesis that no matter what the laws say the probability of an F being a G is, so long as this probability is greater than 0 and less than 1,
 the actual frequency of Gs among the Fs could be any number between 0 and 1 inclusive.  According to strong frequency tolerance, even if the probability of a rigged coin’s landing on heads is only 0.001, it is still possible for such a coin to be tossed an indefinitely large number of times and come up heads every single time.


Nomic frequentism can happily accept weak frequency tolerance.  Laws of the form:

(*)
Fs are G with *-frequency p

require only that the frequency of Gs among the Fs be close to p – with narrower limits the greater the cardinality of the Fs.  And as we saw in Section 6, a law of the form (*) can serve as a plausible interpretation (or reconstruction) of a law of the form:  “The probability of an F being G is p.”  What is more, there are other possible forms that a law about frequencies could take which allow for even greater frequency tolerance; e.g.:

(**)
The frequency with which Fs are G lies in the interval (p – d(N), p + d(N))

where N is the cardinality of the Fs and d(N) is some monotonic decreasing function whose value converges to zero as N approaches infinity.  It is plausible that the same argument we used about Starr’s theory in Section 6b could be extended to someone who accepts a theory in which the probabilistic laws are cashed out as laws of the form (**).  So weak frequency tolerance need raise no worry for nomic frequentism at all.


Matters are different with strong frequency tolerance.  Since nomic frequentism just says that probabilistic laws should be interpreted as laws about frequencies – that is, laws that place constraints on the values of frequencies – it is flatly logically inconsistent with strong frequency tolerance.  Is this a serious problem?  Here is an argument that it is:

(i)  If some proposition has an objective probability that is greater than zero, then that proposition is nomologically possible.  

(ii)  If a proposition is nomologically possible, then its truth is logically consistent with the truth of all the laws of nature.

(iii)  It is nomologically possible for there to be exactly one million coin-tosses.

(iv)  If it is a law of nature that a coin-toss has a probability of ½ of landing heads, then if there are exactly one million coin-tosses, then the probability of each one of them resulting in heads is ½1,000,000.

Therefore (by i-iv), if it is a law of nature that a coin-toss has a probability of ½ of landing heads, then it is consistent with the truth of all the laws of nature that the actual frequency of heads is 1.

But this is obviously generalizable:  No matter how low the probability of getting heads is (so long as it is greater than 0), and no matter how many coin-tosses there are (so long as the number is finite), this argument (if successful) shows that it is consistent with all of the laws of nature for the frequency to be 1.  And that means that there is no limit to how great the difference between the frequency and the probability can be – which amounts to strong frequency tolerance, and which nomic frequentism denies.


But there is a flaw in this argument:  Step (iv) is false, according to nomic frequentism.  (iv) presupposes that it is a law of nature that each fair coin-toss is probabilistically independent of the outcomes of all the other coin-tosses, where this means that the laws imply that:


Pr(Hi|Qi) = Pr(Hi) = ½

where Hi is the proposition that the ith toss lands heads, and Qi is any proposition specifying the outcomes of any set of coin-tosses excluding the ith.  But according to any reasonable nomic frequentist, this is simply not true.  The way a nomic frequentist will represent independence of distinct fair coin-tosses is by denying the existence of any law that implies that the conditional frequency of heads on one toss given the results of another toss is different from ½.  This is perfectly compatible with its being the case that one of these conditional frequencies is, as a matter of nomologically contingent fact, different from ½.  In fact, if there are only finitely many coin-tosses, then at least one such frequency is guaranteed to be different from ½.
  So from a nomic frequentist’s perspective, there are compelling independent reasons for denying (iv).  This blocks the argument.


Nevertheless, even without a compelling, non-question-begging argument in favor of strong frequentism, many people will find it overwhelmingly intuitive.  What their intuitions affirm is that there are (or at least might be) such things as objective, single-case probabilities, and that the familiar probabilistic laws posited by modern scientific theories are laws about such single-case probabilities.  This is an intuition that the nomic frequentist must reject.  I will explore this further in Section 7b.


(v)  The Big Bad Bug
David Lewis (1986; 1994) identified an apparently fatal problem that afflicts many philosophical accounts of objective probability, a problem that has come to be known as “the big bad bug.”  (Lewis himself used that appellation not for the problem, but for objective chance itself.
)  As Lewis presented it, the bug is a problem for Humean accounts of chance.  Michael Thau (1994) argues that non-Humeans are afflicted by the bug as well.  (Lewis and Thau both think the problem can be solved, though.)  Be that as it may, it is easiest to see how the problem arises in the form in which it afflicts the actual-frequency account of objective probability.  This might make it seem as if nomic frequentism is especially vulnerable to the bug.  As we will see though, it is n fact immune.


The big bad bug rears its head to trouble frequentism as follows:  Suppose that you endorse a certain scientific theory T according to which there is some kind of chancy event – call it a coin-toss – that has a chance of ½ of resulting in a certain sort of outcome – call it heads. On a frequentist account of chance, this means that in the long run, half of all coin-tosses result in heads.  Let T also specify that the outcome of each coin-toss is independent of the outcomes of all other tosses.  Let B be your background knowledge; suppose that it includes the frequentist account of chance, as well as the information that there will be exactly N coin-tosses in the history of the world, for some finite, positive number N, and so far none of them have occurred.  Let F be the proposition that every coin-toss will come up heads.  Suppose that you have no access to crystal balls, time machines, or any other strange source of information about the future.  Now, what should your credence in F be?  Well, B implies that there will be exactly N tosses, and T implies that the chance of heads on any given one of them is ½, so together T and B imply that the chance of F is 1/2N.   So, applying the Principal Principle
:

(5)
Cr(F|T&B) = 1/2N > 0

However, T&B entails that the actual frequency of heads is ½, which is logically inconsistent with F.  So:

(6)
Cr(F|T&B) = 0

This is a contradiction, so something has to give.


The contradiction does not arise for nomic frequentism.   Let us alter the case so that B includes the truth of nomic frequentism, and modify T in the way illustrated in Section 3:  Thus, T implies that it is a law that coin-tosses result in heads with frequency  ½ (or with *-frequency ½ – it would make no important difference, though it would make the calculations to follow more complicated), and there is no law that says that any fair coin-toss with property Z yields heads with frequency (or probability) q, where Z supervenes on what is in not in the causal future of the coin-toss and q ( ½.  Then T&B is still inconsistent with F, so (6) is still true.  But the argument for (5) does not go through, and (5) is in fact false.  

To see this, note first that the argument for (5) could be spelled in either of two ways.  We could first use T to derive the conclusion that the chance of F is 1/2N and then use the Principal Principle to derive (6).  Alternatively, we could use T and the Principle to infer the following:

(7)
Cr(H1|T & B) = ½

(8)
For all i in 1, 2, … N:  Cr(Hi|Ai-1 & T & B) = ½

where Hi is the proposition that the ith toss lands heads, and Ai is the proposition that all of the first i tosses land heads.  From (7) and (8), (5) follows mathematically.  But if we switch from a frequentist to a nomic frequentist account of probabilistic laws, neither way of spelling out the argument works.  The first way does not work because T says nothing about chances, and so it does not allow us to infer that the chance of F is 1/2N.  The second way does not work because (8) is false.  In particular:

(9)
Cr(H(N/2 + 1)|AN/2 & T & B) = 0

since B entails that there will be N tosses, B & T entails that exactly half of them will result in heads, AN/2 says that the first half of them all result in heads, and H(N/2 + 1) says that one toss outside of the first half results in heads -- so H(N/2 + 1), AN/2, B, and T form an inconsistent set.  From a nomic frequentist point of view, the argument for (5) is blocked, and (5) itself is false.  So the nomic frequentist is stuck with only half of the contradiction – which is to say, no contradiction at all.


This might seem to contradict what we saw back in Section 6a, where we learned that:


Cr(~Hi | Ui-1 & TFran & B) = ½

where Ui can be any proposition that specifies the outcomes of the first i tosses (such as Ai), TFran is Fran’s nomic frequentist version of the theory of games of chance, and B is Fran’s background knowledge.  Since ~Hi and Hi should have equal probabilities, this seems to imply (letting i = N/2 + 1)
:

Cr(H(N/2 + 1)|AN/2 & T & B) = ½

contradicting (9).  But there is not really a contradiction here; there appears to be one only because the value of B has changed in a crucial way.  Back in Section 6a, we assumed that Fran’s background knowledge included no law that implied that the frequency of heads among coin-tosses with property Z had any value other than ½, where Z is any property that supervenes on what is not causally downstream of the coin-toss itself.  It followed from this that Fran had no information relevant to whether the ith coin-toss lands heads that was not trumped by the information that the toss was fair.  But in the case we are considering now, B is your background knowledge, and ex hypothesi you do have some such knowledge:  In particular, since you know that there will be exactly N coin-tosses ever, and that exactly half of them will land heads, you know that any coin-toss made later than N/2 tosses that all landed heads will not land heads.  So you do not meet all the conditions we set on Fran.

7b.  Objections to Nomic Frequentism in Particular
(i)  Intuitions about Single-Case Probabilities

Many people find it very intuitive that there could be such things as objective, single-case probabilities, or chances.  These would be properties of events, or states of affairs, that effectively associate numbers between 0 and 1 with possible outcomes in a way that satisfies the probability calculus as well as the Principal Principle.  Of course, intuition alone cannot be evidence that there are such things in the actual world; at best, they serve as evidence that it is possible for there to be such things.  Let us take this for granted:  There are possible worlds where there are such things as chances, and at many of those worlds there are laws of nature governing the evolution of the chances.


What reason do we have to believe that there are such things in the actual world?  The only good answer here would be:  “Because there are empirically successful scientific theories that posit them.”  Are there such theories?  Well, there are certainly some fabulously successful theories that posit probabilistic laws.  One way of interpreting those posited laws is as laws about chances, but another is to interpret them as laws about frequencies.  (In fact, there is more than one way to interpret them as laws about frequencies – we could interpret them along the line of Fran’s theory, as laws about bare frequencies plain and simple, or along the lines of Starr’s theory, as laws about *-frequencies – or, we could interpret them as laws of the form (**) from Subsection 7a.)  The argument of Section 6 shows that it makes no difference at all for scientific purposes which interpretation we choose.  So the fabulously successful theories in question are really ambiguous – they admit of multiple interpretations, all of which are demonstrably equivalent in terms of their explanatory power, their predictive power, and the way in which evidence bears on their plausibility. What the empirical success of these theories justifies us in believing is (at most) that the theories are true on at least one of these different interpretations.


These interpretations are quite different in their ontologies.  A nomic-frequentist interpretation of a theory that posits probabilistic laws requires the existence of the items mentioned in the laws themselves (coins, roulette wheels, electrons, tritium atoms or whatever) and it requires as much ontology as the existence of laws of nature does.  Beyond that, there are no additional requirements:  If you have coin-tosses and their outcomes, then you get the frequencies for free.  By contrast, the interpretation of these theories as theories about chances requires in addition the existence of chances.


Summing up:  Our intuitions about chances at best give us evidence that chances are metaphysically possible, not that there are any in the actual world.  The empirical success of scientific theories that posit probabilistic laws at best gives us evidence that either there are laws about chances, or else there are laws about frequencies.  The first disjunct can be true only if the world’s ontology is richer than we have yet seen any reason to believe that it is; the second disjunct accounts for all of the evidence we have, or could ever have.  There might be such things as chances, but we do not need to posit them in order to theorize successfully with the world as we find it, or in order to make sense of the theories that have already proven successful.  As intuitively familiar as the concept of chance may be, it cannot do any work that we need done, which is not already done perfectly well by other concepts which we need for other purposes anyway.  This does not prove that there is no such thing as a chance, but it does blunt the force of the intuition that there could be such things as an objection to nomic frequentism.

(ii)  Probabilistic Laws in a Deterministic World

Many philosophers hold that even if the world is deterministic, it should still be possible for there to be objective probabilities taking non-extremal values.  In a nomic-frequentist framework, what this comes to is the thought that even if the world is deterministic, it should still be possible for there to be laws about frequencies, involving non-extremal frequencies.  One test of a good account of objective probabilities is whether it can in fact allow for this possibility.  It might seem that nomic frequency cannot.  For if all events are determined by prior events according to universal laws, how can there also be any additional laws to the effect that, e.g., half of all coin-tosses land heads?


The answer is very simple:  Suppose that our world has a set of deterministic laws which completely determine the state of the universe at one time, given its state at any earlier (or later) time.  There might also be additional laws that narrow down the range of possible initial states.  In particular, there might be laws that restrict the world to certain initial states, which, together with the deterministic dynamical laws, impose constraints on the frequencies at all later times.  For example, it might be that given the deterministic laws of our world, there are some initial states that would lead to trajectories in which the long-run frequency of coin-tosses is very close to ½, and other which would not; there might then be a law restricting the world to one of the former states.  Then it would be nomologically necessary that the frequency of heads is close to ½.  Again, it might be that the deterministic laws allow for some possible initial states that would lead to some persistent, large-scale anti-thermodynamic behavior, though many more than do not; it might be a law that the initial sate of the universe belong to the latter category.  This would make it nomologically necessary that the laws of thermodynamics hold for almost all macroscopic systems, almost all of the time.  Nomic frequentism can thus handle the case of probabilistic laws in a deterministic universe with no hitches.

7c.  Virtues of Nomic Frequentism
Nomic frequentism takes for granted the notion of a law of nature, and offers no account of it.  A nomic frequentist can accept any of the accounts of lawhood that are currently on offer, or simply take lawhood as a primitive.  Once we have entitled ourselves (or helped ourselves) to the notion of a law of nature, the special case of a probabilistic law poses a new and special problem:  These laws evidently refer to probabilities, or probabilistic properties, and it is not obvious how we should interpret these references.  This is the problem to which nomic frequentism is a solution.  While requiring no ontological posits over and above whatever ones are involved in the idea of lawhood itself, it provides an account of what probabilistic laws of nature are.  It does so in a way that does justice to the way that probabilistic laws can offer explanations and the way in which they are confirmed or disconfirmed by empirical evidence.  It does so without invoking any metaphysical posits that are at all controversial.  Who could ask for anything more?
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� Is it propositions that are laws of nature, or something else – facts, or states of affairs, or instantiations of higher-order universals, or whatever?  I hold that what can be a law of nature is a true proposition, which as far as I can tell is the same thing as a fact.  Many philosophers will disagree, but that disagreement has no bearing on the issues I will discuss in this paper.  Where I say “proposition P is a law of nature,” others may substitute “proposition P is true because its being true is a consequence of the laws of nature being what they are,” or “proposition P is nomologically necessary though logically contingent,” without seriously affecting the argument. 


� As we consider these more complex cases, we lose the syntactic similarity to (ALL) that made it initially plausible that there could be laws of form (R%).  But for one thing, (ALL) itself is far simpler than real paradigm cases of laws of nature are.  For another, my real argument for the possibility of laws about frequencies does not rest on the similarity of (R%) and (ALL); it will be given in section 3.


� To illustrate:  the alternating sequence {G, Non-G, G, Non-G, G, Non-G…} is not random because there is a specifiable method of selecting a subsequence that will result in a different limiting frequency of G’s:  E.g. if you form a subsequence by taking all of the odd members of the original sequence, the limiting frequency will be 1, whereas in the original sequence it is ½.


� Or alternatively:  For any growing-ball sequence centered on any point p, except for points in a set of measure zero.


� But it presupposes that there are at most finitely many Fs within any finite spacetime region.  (For otherwise, the relative frequencies within the individual balls in the sequence will not be well-defined. )  This assumption holds if the Fs are the electrons, the tritium atoms, or the fair coin-tosses.  It is an interesting question how we might generalize (C) to relax this assumption.


� Note that if r = ½, then (C) rules out the possibility that the number of Fs is finite and odd.


� Note that it is possible for Fs to be G with *-frequency a, and for them to be non-G with *-frequency b, where a + b ( 1.  For example, if there are exactly two Fs and one is a G and the other is a non-G, then Fs are G with *-frequency 1/3 and they are non-G with *-frequency 1/3.  (Hence, *-frequencies need not satisfy the probability axioms – but of course, that was obvious anyway, since it is possible for Fs to be Gs with many different *-frequencies!)  This opens up the possibility that it is a law  that Fs are G with *-frequency a, and also a law that they are non-G with *-frequency b, where a + b ( 1.  This might seem to be a good reason to reject the whole idea (which I am about to propose in the main text) of interpreting probabilistic laws as laws about *-frequencies.  But note that this situation can arise only if it is nomologically impossible for there to an infinite number of Fs. In fact, it is not hard to see that for particular values of a and b, the pair of possible laws just mentioned would place a certain finite limit on the maximum possible cardinality of the Fs. (For example, suppose that there are at least four Fs, and Fs are G with *-frequency a and non-G with *-frequency b, and suppose that the actual frequency with which Fs are G is f.  In this case, the definition of *-frequency implies that |a – f| and |b – f| must each be less than 1/8, so |a – b| must be less than ¼.  So if a = 1/3 and b = 2/3, as in the above example, then there could not be as many as four Fs.)  Thus, the only way that the laws about *-frequencies can leave the cardinality of the Fs unconstrained is for them not to attribute *-frequencies to the Fs that violate the probability axioms in this way.   Insofar as we think that the laws of nature about, say, electrons refrain from placing any limit on the number of electrons there can be in the history of the universe, we have reason to think that any laws about *-frequencies will assign *-frequencies that satisfy the probability axioms, thus mimicking familiar putative probabilistic laws of nature.


� In order to make sure that this law is non-trivial, let us understand “fair toss of a fair coin” (or “fair coin-toss”) not to be analytically equivalent to “coin-toss in which the chance of heads is ½,” but instead to pick out a certain type of coin-toss in terms of  intrinsic physical characteristics excluding its probability of yielding heads.


� I will usually write as if the arguments of probability functions are propositions, but sometimes I will write as if they are events, and I will slide back and forth between an event and the proposition that that event occurred when it improves ease of exposition.  Context should remove any ambiguity.


� Or *-frequencies – if we substituted *-frequencies for frequencies, then the following discussion would be slightly more complicated, but would not be substantially affected.


� That is, Fr(U|V) = the frequency with which Vs are Us.


� We might try to get around this problem by modifying (2) so that it requires not that the frequency be exactly ½, but only that it lie in some interval centered on ½.  But obviously, we can modify the argument just given to produce a counterexample to this variant – just require than m be big enough that (N-m)/2 is outside the interval in question.


� See note 8.


� One useful way to define a local set of laws is as a set of laws that are satisfied at a possible world just in case the state of the universe at each space-time point is consistent with them.  The laws of local field theories are local in this sense.  Any set of laws containing a law about frequencies is obviously not local in this sense.  For example, there need be nothing intrinsic to the state of the universe at any single point that s inconsistent with the requirement that throughout the universe, half of all Fs are Gs, even if in fact there are many Fs and all of them are Gs.


� And on more recent versions of the counterfactual approach to causation, the same thing follows.  For example, Woodward (2003) hold causation requires the possibility of manipulating the effect by means of manipulating the cause; as we have seen, the existence of a law about the frequency of pre-4500-day tritium-atom decays in no way makes it possible to manipulate anything else by means of manipulating when one particular tritium atom decays.


� See e.g. Dretske (1977, 28-29).  (p. 262 in the original version.)


� See Dretske (1977, 23-24) (pp. 256-258 in the original version); Foster (2004, 47-48); Goodman (1965, 73); Lange(2000, 111-115); Tooley (1977, 63-64).


� Armstrong adds a wrinkle to his version of the universals account:  He holds that a law of nature N(F,G) is not only a state of affairs, but also a universal, whose instances are all of the particular pairs of states of affairs of the form (a’s being F, a’s being G).  (Armstrong 1983, 88-91.)  Armstrong appeals to this part of this theory in order to solve the puzzle of how a law of nature is related to its own instances, and to explain why a law entails the associated regularity (p. 97).  This might seem to give Armstrong a good reason to reject the proposal I have just made, since if there is a law N0.7(F,G) then 30% of the Fs will not be Gs, and so this law qua universal will not be instantiated wherever F is; it will be instantiated only by those 70% of the Fs which happen to be Gs.  My reply is that this may or may not be a problem from Armstrong’s point of view, but it is not a problem that an Armstrongian could escape from by refusing to recognize the relation N0.7For the same worry afflicts probabilistic laws as Armstrong conceives of them:  The law is not instantiated in those cases where the consequent does not occur (p. 129). 


� Assuming, that is, that it is possible for the laws to fail to supervene on this base; see Earman and Roberts (2005) for an argument to the contrary.


� My own account of laws (found in (Roberts 2009)) is different from any of those surveyed above.  Its central idea (abstracting away from a lot of detail) is that to be a law of nature is to be among the set of generalizations that collectively guarantee the reliability of all of the legitimate measurement methods.   This account leaves it open just what it would take for a measurement method to count as reliable.  But one possibility is that reliability in a frequentist sense is adequate – that a measurement method can count as reliable if its result is very close to the true value of the measured variable in a large fraction of the cases in which it is used.  If this is so, then if my account of lawhood is correct, then there can be laws about frequencies.


� One possible objection to (PDI) is that it should impose the stronger requirement that we know that b has been selected from the class U by an unbiased procedure; if we do not know this to be the case, then we are not justified in setting our degree of belief that b is in V to r.  ((PDI) requires only that we do not know that the process was biased; we should impose the stronger requirement that we do positively know that it was unbiased – or so says the objection.)  But this objection is overhasty.  Suppose that we are aware of no information that suggests that, if the process whereby b was selected was biased, it was more likely to be biased in favor of b’s being V than to be biased against it, or vice versa.  In this case, it seems that we should be equally confident that the process was biased in favor of V and that it was biased against b.  So these two possibilities should cancel out in our reckoning, and out degree of belief should be r.  On the other hand, suppose that we are aware of some such information.  Then this is information that is relevant to whether b is a member of V, which is not trumped by the information that it is a member of U.  So the conditions of (PDI) are not met.  In neither case do we have a counterexample to (PDI).


� Some dense property – not necessarily some sparse property.


� Objection:  But there is another way Fran may have come by this confidence:  She may have just always already been confident that a fair coin-toss with property Z is more (or less) likely to result in heads than non-Z fair tosses are.  This might have been built into her prior credence’s from the start.  If you find this objection persuasive, then I ask you to hold this thought until we get to note 27.


� In the latter case, Fran believes that there are laws that entail something of the form:


	If SC, then fair coin-tosses with property Z land heads with a frequency q


or something of the form:


If SC, then fair coin-tosses with property Z land heads with objective probability q


where SC is some standing condition and q ( ½.  This conditional then is nomologically necessary; it is then the law of form (X) or (X’) that Fran is committed to, contrary to our assumption.


� See note 24.


� Lewis 1986, 1994.  One form of the Principal Principle says:





	Cr(A|Ch(A) = x & E) = x





where Ch is the chance function, Cr is any initial reasonable credence function (that is, any probability function that could serve as the “ultimate priors” for an ideally rational Bayesian subject) and E is any admissible evidence – that is, any evidence that does not include special sources of information from the future, such as crystal balls or time machines.


� Objection:  What if Chas always already had a degree of belief very close to 1 that this particular coin-toss would result in heads?  It is not that he has learned some new law about chances that yields this result, and it is not that he has any spooky information from the future about this particular coin-toss.  It is just that his ultimate prior probabilities – the credence distribution with which he began his life as a rational agent – assigned a very high probability to heads on this particular toss, and nothing he has learned in the meantime has given him any reason to lower this probability.  In this case, the Principal Principle would seem not to apply to Chas, and the result just stated in the text would not follow.


	For believers in the Principal Principle, this objection is easily disposed of:  If Chas began life with such a prior credence distribution, then he is guilty of a long-standing irrationality.  For no probability function that assigned such a high degree of belief to heads on a particular coin toss, and would still do so even after conditionalizing on the information that that coin toss has a chance of only ½ of resulting in heads, could be a reasonable initial credence function (see note 26).   If Chas is supposed to represent a typical rational subject who accepts the standard theory of games of chance on the basis of empirical evidence, then we are entitled to assume that he does not suffer from this problem.


	This reply to the objection might raise more questions than it answers.  But I think it is fair enough, as far as it goes.   And the very same reply can be given to the objection considered back in note 23:  If Fran (or Starr) started out with credences like those described, then there would clearly be something unreasonable about her doing so.  So for our purposes, we may put this possibility aside.


	If someone objects that this is too fast and loose a way for me to deal with the objection of note 23, then my reply is a tu quoque:  The standard way of understanding probabilistic laws understands them in terms of objective probabilities or chances that satisfy the Principal Principle (or some close cousin thereof, such as the “New Principle” NP (Lewis 1994)) and so ultimately rests on the assumed distinction between reasonable and unreasonable initial credence functions, of which no detailed account has never been given.  If advocates of chance can take this distinction for granted, then I can too, and I stipulate that Fran and Starr began their lives with reasonable initial credence functions.


	Incidentally, my own view is that it is possible to make sense of the concept of chance without invoking the concept of a reasonable initial credence function – or indeed, any subjective or personal probabilities at all.  I explain how in my (unpublished).  If the argument I give there succeeds, then the entire argument of this paper can be reworked in a way that does not mention credence at all.  I adopt the familiar framework here in order to keep a long paper from getting even longer.


� “Qualitative features” as opposed to object-dependent properties like “being identical to Barack Obama” – not as opposed to quantitative properties.


� von Mises (1981, 28-29).


� Perhaps we can even drop this qualification, but I won’t go into that issue here.


� Proof:  Suppose that for some finite N, there are exactly N coin-tosses in the history of the universe, and suppose that half of them come up heads, including the very last one.  Then Fr(Hi|Toss i is preceded by a run of N-1 tosses among which ½(N-1) – 1 landed heads) = 1 ( ½,  


� See Lewis (1994, 473).


� See note 26.


� This equation assumes that N is even; otherwise we would have to replace N/2 by (N+1)/2 throughout.


� In particular, it is not true of you that you believe that there is no law of nature of the form:





(Z)	The frequency of heads among coin-tosses with property Z is q





where Z supervenes on what is not in the causal future of the coin-toss itself and q ( ½.  But it might seem that you should be able to believe this, consistently with everything else we have stipulated about you in this example – why can you not?  Well, since B is your background knowledge, you know somehow that there will be exactly N coin-tosses ever.  You do not have special access to information about the future, so you must know this on empirical-inductive grounds.  Either you have some inductive reason for believing that it is a law that there will be exactly N coin-tosses, or else you have some inductive grounds for believing in some law L, and empirical grounds for believing some contingent condition C, such that C and L entail that there will be exactly N coin-tosses.  So L entails that if C, then there will be exactly N coin-tosses; hence, L together with the law that coin-tosses result in heads half of the time entails that if C, then every coin-toss that occurs later than N/2 distinct coin-tosses that landed heads, will not land heads.  That in turn entails that the frequency of heads among coin-tosses that are such that C is true and that occur later than N/2 coin-tosses that land heads is 0.  Therefore, this last proposition is nomologically necessary according to your background knowledge, and it has the form (Z); the property Z = being such that C and occurring later than N/2 coin-tosses that land heads.  


	This brings out a very unusual feature of your background knowledge in the example under consideration:  You believe that there is a law of the form (Z), something that most of us certainly do not believe.  Of course, this results from the fact that when we set up the situation, we had to stipulate that your background beliefs are very unusual:  You fully believe that there will be exactly N coin-tosses, and you also fully believe that half of them will land heads up even though you have to yet witnessed a single one of them.   Getting the big bad bug going requires invoking some very contrived scenarios.
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