Skip to main content
Log in

Autonomy in evolution: from minimal to complex life

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Our aim in the present paper is to approach the nature of life from the perspective of autonomy, showing that this perspective can be helpful for overcoming the traditional Cartesian gap between the physical and cognitive domains. We first argue that, although the phenomenon of life manifests itself as highly complex and multidimensional, requiring various levels of description, individual organisms constitute the core of this multifarious phenomenology. Thereafter, our discussion focuses on the nature of the organization of individual living entities, proposing autonomy as the main concept to grasp it. In the second part of the article we show how autonomy is also fundamental to explaining major evolutionary transitions, in an attempt to rethink evolution from the point of view of the organizational structure of the entities/organisms involved. This gives further support to the idea of autonomy not only as a key to understanding life in general but also the complex expressions of it that we observe on our planet. Finally, we suggest a possible general principle that underlies those evolutionary transitions, which allow for the open-ended redefinition of autonomous systems: namely, the relative dynamic decoupling that must be articulated among distinct parts, modules or modes of operation in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrianantoandro, E., Basu, S., Karig, D., & Weiss, R. (2006). Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology. doi:10.1038/msb4100073.

  • Barandiaran, X. (2008). Mental life: A naturalized approach to the autonomy of cognitive agents. PhD Dissertation, University of the Basque Country (UPV/EHU).

  • Barandiaran X., Moreno A. (2006) On what makes certain dynamical systems cognitive. Adaptive Behavior 14(2): 171–185

    Article  Google Scholar 

  • Barandiaran X., Moreno A. (2008) Adaptivity: From metabolism to behavior. Adaptive Behavior 16(5): 325–344

    Article  Google Scholar 

  • Barandiaran X., Rohde M., Di Paolo E. (2009) Defining agency: Individuality, normativity, asymmetry and spatiotemporality in action. Journal of Adaptive Behavior 17(5): 367–386

    Article  Google Scholar 

  • Bedau M. (1996) The nature of life. In: Boden M. (Ed.) The philosophy of artificial life. Oxford University Press, New York, pp 332–357

    Google Scholar 

  • Bedau M. (1998) Four puzzles about life. Artificial Life 4: 125–140

    Article  Google Scholar 

  • Bedau M. (2003) Artificial life: Organization, adaptation, and complexity from the bottom up. Trends in Cognitive Science 7: 505–512

    Article  Google Scholar 

  • Bechtel W. (2006) Discovering cell mechanisms: The creation of modern cell biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bechtel W. (2007) Biological mechanisms: Organized to maintain autonomy. In: Boogerd F., Bruggeman F., Hofmeyr J. H., Westerhoff H. V. (eds) Systems biology: Philosophical Foundations. Elsevier, Amsterdam, pp 269–302

    Google Scholar 

  • Benner S. A., Sismour A. M. (2005) Synthetic biology. Nature Reviews Genetics 6: 533–543

    Article  Google Scholar 

  • Bickhard M. H. (2000) Autonomy, function, and representation. Communication and Cognition: Artificial Intelligence 17(3–4): 111–131

    Google Scholar 

  • Bickhard M. H. (2009) The biological foundations of cognitive science. New Ideas in Psychology 27: 75–84

    Article  Google Scholar 

  • Boden M. A. (1999) Is metabolism necessary?.  British Journal for the Philosophy of Science 50: 231–248

    Article  Google Scholar 

  • Bonner J. T. (2000) First signals: The evolution of multicellular development. Princeton University Press, Princeton

    Google Scholar 

  • Buss L. (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Calvo, P., Gomila, T. (eds) (2008) Handbook of cognitive science: An embodied approach. Elsevier, Amsterdam

    Google Scholar 

  • Christensen W., Bickhard M. (2002) The process dynamics of normative function. Monist 85(1): 3–28

    Google Scholar 

  • Christensen W. D., Hooker C. A. (2000) An interactivist-constructivist approach to intelligence: Self-directed anticipative learning. Philosophical Psychology 13: 5–45

    Article  Google Scholar 

  • Clark A. (1997) Being there: Putting brain, body and world together again. MIT Press, Cambridge, MA

    Google Scholar 

  • Cleland, C. E. (2011). Life without definitions. Synthese. doi:10.1007/s11229-011-9879-7.

  • Cleland C. E., Chyba C. F. (2002) Defining ‘life’. Origins of Life 32: 387–393

    Article  Google Scholar 

  • Cleland C. E., Chyba C. F. (2007) Does ‘life’ have a definition?. In: Sullivan W. T., Baross J. A. (eds) Planets and life: The emerging science of astrobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Conrad M. (1979) Bootstrapping on the adaptive landscape. BioSystems 11: 167–182

    Article  Google Scholar 

  • Conrad M. (1990) The geometry of evolution. BioSystems 24: 61–81

    Article  Google Scholar 

  • Cornish-Bowden A., Cárdenas M.L., Letelier J.C., Soto-Andrade J. (2007) Beyond reductionism: metabolic circularity as a guiding vision for a real biology of system. Proteomics 7: 839–845

    Article  Google Scholar 

  • Craver C. F. (2001) Role functions, mechanisms, and hierarchy. Philosophy of Science 68: 53–74

    Article  Google Scholar 

  • Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–765 (Reprinted in D. J. Buller (Ed.). (1999). Function, selection, and design (pp. 57–83). Albany, NY: SUNY Press.).

  • Davies P. S. (2001) Norms of nature: Naturalism and the nature of functions. MIT Press, Cambridge, MA

    Google Scholar 

  • Dawkins R. (1976) The selfish gene. Oxford University Press, New York

    Google Scholar 

  • De Duve C. (1991) Blueprint for a cell: The nature and origin of life. Neil Patterson Publishers, Burlington, NC

    Google Scholar 

  • De Duve C. (2002) Life evolving. Oxford University Press, New York

    Google Scholar 

  • Delancey C. (2006) Ontology and teleofunctions: A defense and revision of the systematic account of teleological explanation. Synthese 150: 69–98

    Article  Google Scholar 

  • Dennett D. (1995) Darwin’s dangerous idea. Simon and Schuster, New York, NY

    Google Scholar 

  • Di Paolo E. (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences 4(4): 429–452

    Article  Google Scholar 

  • Dupré J., O’Malley M.A. (2009) Varieties of living things: Life at the intersection of lineage and metabolism. Philosophy and Theory in Biology 1(e003): 1–25

    Google Scholar 

  • Edin B. (2008) Assigning biological functions: Making sense of causal chains. Synthese 161: 203–218

    Article  Google Scholar 

  • Eigen M., Schuster P. (1979) The hypercycle: A principle of natural self-organization. Springer, Berlin

    Google Scholar 

  • Elsasser W. M. (1966) Atom and organism. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Emmeche C., Hoffmeyer J. (1991) From language to nature: The semiotic metaphor in biology. Semiotica 84(1/2): 1–42

    Article  Google Scholar 

  • Endy D. (2005) Foundations for engineering biology. Nature 438: 449–453

    Article  Google Scholar 

  • Gánti T. (1971) The principle of life (1st ed.). Gondolat, Budapest

    Google Scholar 

  • Gerhart J., Kirschner M. (1997) Cells, embryos, and evolution. Blackwell Science, Malden, MA. (in Hungarian)

    Google Scholar 

  • Gibas R. W. (2005) Embodiment and cognitive science. Cambridge University Press, Cambridge

    Google Scholar 

  • Godfrey-Smith P. (1994) A modern history theory of functions. Noûs 28: 344–362

    Article  Google Scholar 

  • Gould, S. J. (1985). The flamingo’s smile (Chapt. 1.5). New York: W. W. Norton.

  • Griesemer J., Szathmáry E. (2009) Ganti’s chemoton model and life criteria. In: Rasmussen S., Bedau M. A., Chen L., Deamer D., Krakauer D. C., Packard N. H., Stadler P. F. (eds) Protocells: Bridging nonliving and living matter. MIT Press, Cambridge, pp 481–512

    Google Scholar 

  • Haldane, J. B. S. (1994/1929). The origin of life. In D. W. Deamer & G. R. Fleischaker (Eds.), Origins of life: The central concepts (pp. 73–81). Boston: Jones and Barlett.

  • Haraway D. (1976) Crystals, fabrics, and fields. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Harold F. (1986) The vital force: A study of bioenergetics. Freeman, New York

    Google Scholar 

  • Harold H. (2001) The way of the cell. Oxford University Press, Oxford

    Google Scholar 

  • Hertel J., Lindemeyer M., Missal K., Fried C., Tanzer A., Flamm C., Hofacker I. L., Stadler P. F. (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7(1): 25

    Article  Google Scholar 

  • Hoffmeyer J. (1996) Signs of meaning in the universe: The natural history of signification. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Hooker C. A. (1995) Reason, regulation and realism: Toward a regulatory systems theory of reason and evolutionary epistemology. State University of New York Press, Albany

    Google Scholar 

  • Hooker C. (2009) Interaction and bio-cognitive order. Synthese 166: 513–546

    Article  Google Scholar 

  • Jonas H. (1966) The phenomenon of life: Toward a philosophical biology. Harper and Row, New York

    Google Scholar 

  • Kant, I. (1790/1952). Critique of judgment. Oxford: Oxford University Press.

  • Kauffman S. (2000) Investigations. Oxford University Press, Oxford

    Google Scholar 

  • Kauffman S. (2003) Molecular autonomous agents. Philosophical Transactions of the Royal Society of London A 361: 1089–1099

    Article  Google Scholar 

  • Keim C. N., Martins J. L., Abreu F., Rosado A. S., Linsde Barros H., Borojevic R., Lins U., Farina M. (2004) Multicellular life cycle of magnetotactic prokaryotes. FEMS Microbiology Letters 240(2): 203–208

    Article  Google Scholar 

  • Keller E. F. et al (2008) What is wrong with the question, What is Life?. In: Marrati P. (Ed.) Concepts of life. Stanford University Press, Stanford

    Google Scholar 

  • Kirschner M., Gerhart J. (1998) Evolvability. PNAS 95(15): 8420–8427

    Article  Google Scholar 

  • Kitano H. (2002) Computational systems biology. Nature 420: 206–210

    Article  Google Scholar 

  • Lewontin R. C. (1970) The units of selection. Annual Review of Ecology and Systematics 1: 1–18

    Article  Google Scholar 

  • López-García P., Moreira D. (2004) The synthrophy hypothesis for the origin of eukaryotes. In: Seckbach J. (Ed.) Symbiosis: Mechanisms and model systems. Kluwer Academia Publishers, Dordrecht, Boston, London, pp 133–147

    Google Scholar 

  • Lyon P. (2006) The biogenic approach to cognition. Cognitive processes 7: 11–29

    Article  Google Scholar 

  • Lyon P., Keijzer F. et al (2007) The human stain: Why cognitivism can’t tell us what cognition is and what it does. In: Wallace B. (Ed.) The mind, the body and the world: Psychology after cognitivism?. Imprint Academic, London, pp 132–165

    Google Scholar 

  • Mansy S. et al (2008) Template directed synthesis of a genetic polymer in a model protocell. Nature 454: 122–126

    Article  Google Scholar 

  • Margulis L. (1991) Symbiosis as a source of evolutionary innovation: Speciation and morphogenesis. MIT Press, Cambridge, London

    Google Scholar 

  • Margulis L., Sagan D. (2002) Acquiring genomes: A theory of the origins of species. Basic Books, New York

    Google Scholar 

  • Mattick J. (2004) The hidden genetic program of complex organisms. Scientific American 291(4): 60–67

    Article  Google Scholar 

  • Maturana H., Varela F. J. (1973) De máquinas y seres vivos: Una teoría sobre la organización biológica. Editorial Universitaria S.A, Santiago de Chile

    Google Scholar 

  • Maturana H., Varela F. (1992) The tree of knowledge. Shambala, Boston

    Google Scholar 

  • Maynard Smith J. (1986) The problems of biology. Oxford University Press, Oxford

    Google Scholar 

  • Mayr E. (1982) The growth of biological thought. Harvard University Press, Cambridge, MA

    Google Scholar 

  • McLaughlin P. (2001) What functions explain: Functional explanation and self-reproducing systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Michod R. E. (1999) Darwinian dynamics: Evolutionary transitions in fitness and individuality. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Michod, R. E., & Roze, D. (1999). Cooperation and conflict in the evolution of individuality. Part III. Transitions in the unit of fitness. In C. L. Nehaniv (Ed.), Mathematical and computational biology: Digital evolution, hierachical complexity, and computational morphogenesis. American Mathematical Society Series: Lectures on Mathematics in the Life Sciences (Vol. 26, pp. 47–91).

  • Miller S. L. (1953) A production of amino acids under possible primitive Earth conditions. Science 117: 528–529

    Article  Google Scholar 

  • Millikan R. G. (1989) In defense of proper functions. Philosophy of Science 56: 288–302

    Article  Google Scholar 

  • Montoya J. M., Solé R. V. (2002) Small world patterns in food webs. Journal of Theoretical Biology 214: 405–412

    Article  Google Scholar 

  • Moreno A., Etxeberria A. (2005) Agency in natural and artificial systems. Artificial Life 11(1–2): 161–176

    Article  Google Scholar 

  • Moreno A., Etxeberria A., Umerez J. (2008) The autonomy of biological individuals and artificial models. BioSystems 91(2): 309–319

    Article  Google Scholar 

  • Moreno A., Lasa A. (2003) From basic adaptivity to early mind: The origin and evolution of cognitive capacities. Evolution and Cognition 9(1): 12–24

    Google Scholar 

  • Moreno A., Ruiz-Mirazo K. (1999) Metabolism and the problem of its universalization. BioSystems 49(1): 45–61

    Article  Google Scholar 

  • Moreno A., Ruiz Mirazo K. (2009) The problem of the emergence of functional diversity in prebiotic evolution. Biology and Philosophy 24(5): 585–605

    Article  Google Scholar 

  • Morowitz H. J., Heinz B., Deamer D. W. (1988) The chemical logic of a minimum protocell. Origins of Life and Evolution of the Biosphere 18: 281–287

    Article  Google Scholar 

  • Moss L. (2006) Redundancy, plasticity, and detachment: The implications of comparative genomics for evolutionary thinking. Philosophy of Science 73: 930–946

    Article  Google Scholar 

  • Mossio M., Saborido C., Moreno A. (2009) An organizational account for biological functions. British Journal for the Philosophy of Science 60(4): 813–841

    Article  Google Scholar 

  • Nagel E. (1977) Teleology revisited. Journal of Philosophy 74: 261–301

    Article  Google Scholar 

  • Neander K. (1991) Function as selected effects: The conceptual analyst’s defense. Philosophy of Science 58: 168–184

    Article  Google Scholar 

  • Nehaniv C. L. (2003) Evolvability (editorial, special issue on evolvability, dedicated to the memory of Professor Michael Conrad). BioSystems 69(2–3): 77–81

    Article  Google Scholar 

  • Noireaux V., Libchaber A. (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proceedings of the National Academy of Sciences USA 101: 17669–17674

    Article  Google Scholar 

  • Oliver J. D., Perry R. S. (2006) Definitely life but not definitively. Origins of Life and Evolution of the Biosphere 36: 515–521

    Google Scholar 

  • O’Malley M. A., Dupré J. (2007) Size doesn’t matter: Towards a more inclusive philosophy of biology. Biology and Philosophy 22: 155–191

    Article  Google Scholar 

  • Oparin, A. I. (1994/1928). The origin of life. In D. W. Deamer & G. R. Fleischaker (Eds.), Origins of life: The central concepts (pp. 31–71). Boston: Jones and Barlett.

  • Oró J. (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191: 1193–1194

    Article  Google Scholar 

  • Pattee H. H. (1972) Laws and constraints, symbols and languages. In: Waddington C. H. (Ed.) Towards a theoretical biology 4, Essays. Edinburgh University Press, Edinburgh, pp 248–258

    Google Scholar 

  • Pattee H. H. (1977) Dynamic and linguistic modes of complex systems. International Journal of General Systems 3: 259–266

    Article  Google Scholar 

  • Pattee H. H. (1982) Cell psychology: An evolutionary approach to the symbol-matter problem. Cognition and Brain Theory 5(4): 325–341

    Google Scholar 

  • Polanyi M. (1968) Life’s irreducible structure. Science 160: 1308–1312

    Article  Google Scholar 

  • Rasmussen, S., Bedau, M. A., Chen, L., Deamer, D., Krakauer, D. C., Packard, N. H., Stadler, P. F. (eds) (2008) Protocells: Bridging nonliving and living matter. MIT Press, Cambridge

    Google Scholar 

  • Ravesz E., Somera A. L., Mongru D. A., Oltvai Z. N., Barabassi A. L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551–1555

    Article  Google Scholar 

  • Rosen R. (1958) A relational theory of biological systems. Bulletin of Mathematical Biophysics 20: 245–260

    Article  Google Scholar 

  • Rosen R. (1991) Life itself: A comprehensive inquiry into the nature, origin and fabrication of life. Columbia University Press, New York

    Google Scholar 

  • Rosslenbroich B. (2005) The evolution of multicellularity in animals as a shift in biological autonomy. Theory in Biosciences 123: 243–262

    Article  Google Scholar 

  • Rosslenbroich B. (2006) The notion of progress in evolutionary biology. The unresolved problem and an empirical suggestion. Biology and Philosophy 21: 41–70

    Article  Google Scholar 

  • Rosslenbroich B. (2009) The theory of increasing autonomy in evolution—a new proposal for understanding macroevolutionary innovations. Biology and Philosophy 24: 623–644

    Article  Google Scholar 

  • Ruiz-Mirazo K., Etxeberria A., Moreno A., Ibáñez J. (2000) Organisms and their place in biology. Theory in Biosciences 119: 43–67

    Article  Google Scholar 

  • Ruiz-Mirazo K., Mavelli F. (2008) On the way towards ‘basic autonomous agents’: Stochastic simulations of minimal lipid-peptide cells. BioSystems 91: 374–387

    Article  Google Scholar 

  • Ruiz-Mirazo K., Moreno A. (2000) Searching for the roots of autonomy: The natural and artificial paradigms revisited. CCAI (Special issue on autonomy) 17(3–4): 209–228

    Google Scholar 

  • Ruiz-Mirazo K., Moreno A. (2004) Basic autonomy as a fundamental step in the synthesis of life. Artificial Life 10(3): 235–259

    Article  Google Scholar 

  • Ruiz-Mirazo K., Pereto J., Moreno A. (2004) A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere 34: 323–346

    Article  Google Scholar 

  • Ruiz-Mirazo K., Peretó J., Moreno A. (2010) Defining life or bringing biology to life. Origins of Life and Evolution of the Biosphere 40: 203–213

    Article  Google Scholar 

  • Ruiz-Mirazo K., Umerez J., Moreno A. (2008) Enabling conditions for open-ended evolution. Biology and Philosophy 23(1): 67–85

    Article  Google Scholar 

  • Russell S. J., Norvig P. (1995) Artificial intelligence: A modern approach. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Schlosser G. (1998) Self-re-production and functionality: A systems-theoretical approach to teleological explanation. Synthese 116: 303–354

    Article  Google Scholar 

  • Schwann, T. (1839). Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum der Thiere und Pflanzen. Berlin [1847, Microscopical researches into the accordance in the structure and growth of animals and plants]. London: Sydenham Society.

  • Skulatchev V. P. (1992) The laws of cell energetics. European Journal of Biochemistry 208: 203–209

    Article  Google Scholar 

  • Smithers T. (1997) Autonomy in robots and other agents. Brain and Cognition 34: 88–106

    Article  Google Scholar 

  • Sniegowski P. D., Murphy H. A. (2006) Evolvability. Current Biology 16: R831–R834

    Article  Google Scholar 

  • Solé R. V., Munteanu A., Rodriguez-Caso C., Macía J. (2007) Synthetic protocell biology: From reproduction to computation. Philosophical Transactions of the Royal Society of London B 362: 1727–1739

    Article  Google Scholar 

  • Stelreny K., Griffiths P. E. (1999) Sex and death: An introduction to philosophy of biology. The University of Chicago Press, Chicago

    Google Scholar 

  • Szathmary E. (2006) The origin of replicators and reproducers. Philosophical Transactions of the Royal Society of London B 361: 1761–1776

    Article  Google Scholar 

  • Taft R. J., Pheasant M., Mattick J. S. (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29: 288–297

    Article  Google Scholar 

  • Thomson E. (2007) Mind in life. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Varela F. J. (1979) Principles of biological autonomy. North Holland, New York

    Google Scholar 

  • Varela F. J., Maturana H., Uribe R. (1974) Autopoiesis: The organization of living systems, its characterization and a model. BioSystems 5: 187–196

    Article  Google Scholar 

  • Varela F. J., Thomson E., Rosch E. (1991) The embodied mind. MIT Press, Cambridge, MA

    Google Scholar 

  • von Uexküll, J. (1982/1940). The theory of meaning. Semiotica, 42(1), 25–87.

    Google Scholar 

  • Wagner G. P., Altenberg L. (1996) Complex adaptations and the evolution of evolvability. Evolution 50(3): 967–976

    Article  Google Scholar 

  • Watson R. A., Pollack J. B. (2003) A computational model of symbiotic composition in evolutionary transitions. Biosystems 69(2–3): 187–209

    Article  Google Scholar 

  • Weber A., Varela F. (2002) Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences 1: 97–125

    Article  Google Scholar 

  • Wicken J. S. (1987) Evolution, thermodynamics and information: Extending the Darwinian program. Oxford University Press, Oxford

    Google Scholar 

  • Wimsatt, W. (1980) Reductionistic research strategies and their biases in the units of selection controversy. In T. Nickles (Ed.), Scientific discovery: Case studies (Vol. II, pp. 213–259). Dordrecht: Reidel.

  • Wright L. (1973) Functions. Philosophical Review 82: 139–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kepa Ruiz-Mirazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Mirazo, K., Moreno, A. Autonomy in evolution: from minimal to complex life. Synthese 185, 21–52 (2012). https://doi.org/10.1007/s11229-011-9874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9874-z

Keywords

Navigation