Skip to main content
Log in

The New Associationism: A Neural Explanation for the Predictive Powers of Cerebral Cortex

  • Published:
Brain and Mind

Abstract

The ability to predict is the most importantability of the brain. Somehow, the cortex isable to extract regularities from theenvironment and use those regularities as abasis for prediction. This is a most remarkableskill, considering that behaviourallysignificant environmental regularities are noteasy to discern: they operate not only betweenpairs of simple environmental conditions, astraditional associationism has assumed, butamong complex functions of conditions that areorders of complexity removed from raw sensoryinputs. We propose that the brain's basicmechanism for discovering such complexregularities is implemented in the dendritictrees of individual pyramidal cells in thecerebral cortex. Pyramidal cells have 5–8principal dendrites, each of which is capableof learning nonlinear input-to-outputtransfer functions. We propose that eachdendrite is trained, in learning its transferfunction, by all the other principal dendritesof the same cell. These dendrites teach eachother to respond to their separate inputs withmatching outputs. Exposed to differentbut related information about the sensoryenvironment, principal dendrites of the samecell tune to functions over environmentalconditions that, while different, arecorrelated. As a result, the cell as awhole tunes to the source of the regularitiesdiscovered by the cooperating dendrites,creating a new representation. When organizedinto feed-forward/feedback layers, pyramidalcells can build their discoveries on thediscoveries of other cells, graduallyuncovering nature's hidden order. Theresulting associative network is powerfulenough to meet a troubling traditionalobjection to associationism: that it is toosimple an architecture to implement rationalprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles, M., 1991: Corticonics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Barlow, H.B., 1992: The biological role of neocortex, in A. Aertsen and V. Braitenberg (eds), Information Processing in the Cortex, Springer, Berlin, pp. 53-80.

    Google Scholar 

  • Becker, S., 1995: JPMAX: Learning to recognize moving objects as a model-fitting problem, Advances in Neural Information Processing Systems 7, 933-940.

    Google Scholar 

  • Becker, S., 1996: Mutual information maximization: Models of cortical self-organization, Network: Computation in Neural Systems 7, 7-31.

    Google Scholar 

  • Becker, S., 1999: Implicit learning in 3D object recognition: The importance of temporal context, Neural Comp. 11, 347-374.

    Google Scholar 

  • Becker, S. and Hinton, G.E., 1992: A self-organizing neural network that discovers surfaces in random-dot stereograms, Nature 355, 161-163.

    Google Scholar 

  • Bienenstock, E.L., Cooper, L.N. and Munro, P.W., 1982: Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex, J. Neurosci. 2, 32-48.

    Google Scholar 

  • Block, N., 1986: Advertisement for a semantics for psychology, Midwest Studies in Philosophy 10, 615-678.

    Google Scholar 

  • Braitenberg, V., 1978: Cortical architectonics: General and areal, in M.A.B. Brazier and H. Petsch (eds), Architectonics of the Cerebral Cortex, Raven, Philadelphia.

    Google Scholar 

  • Brooks, R., 1991: Intelligence without representation, Artif. Intell. 47, 139-159.

    Google Scholar 

  • Burnod, Y., 1988: An Adaptive Neural Network: The Cerebral Cortex, Masson, Paris.

    Google Scholar 

  • Carey, S., 1985: Conceptual Change in Childhood, MIT Press, Cambridge, MA.

    Google Scholar 

  • Cauller, L., 1995: Layer I of primary sensory neocortex:Where top-down converges upon bottom-up, Behav. Brain Res. 71, 163-170.

    Google Scholar 

  • Chalmers, D., 1996: The Conscious Mind: In Search of a Fundamental Theory, Oxford University Press, Oxford.

    Google Scholar 

  • Clark, A. and Thornton, C., 1997: Trading places: Computation, representation, and the limits of uninformed learning, Behav. Brain Sci. 20, 57-90.

    Google Scholar 

  • Dennett, D.C., 1994: The practical requirements for making a conscious robot, Philosophical Transactions of the Royal Society A349, 133-146.

    Google Scholar 

  • Deuchars, J., West, D.C. and Thomson, A.M., 1994: Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro, J. Physiol. (Lond.) 478, 423-435.

    Google Scholar 

  • Dretske, F., 1981/ 1999: Knowledge and the Flow of Information, CSLI Publications, Stanford.

    Google Scholar 

  • Dretske, F., 1988: Explaining Behavior, MIT Press, Cambridge, MA.

    Google Scholar 

  • Edelman, G.M., 1987: Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books, New York.

    Google Scholar 

  • Favorov, O.V. and Kelly, D.G., 1996: Local receptive field diversity within cortical neuronal populations, in O. Franzen, R. Johansson and L. Terenius (eds), Somesthesis and the Neurobiology of the Somatosensory Cortex, Birkhauser, Basel, pp. 395-408.

    Google Scholar 

  • Favorov, O.V., Ryder, D., Hester, J.T., Kelly, D.G. and Tommerdahl, M., 2001: The cortical pyramidal cell as a set of interacting error backpropagating dendrites: A mechanism for discovering nature's order, in R. Hecht-Nielsen and T. McKenna (eds), Theories of the Cerebral Cortex, Springer-Verlag, Berlin, in press.

    Google Scholar 

  • Feldman, M.L., 1984: Morphology of the neocortical pyramidal neuron, in A. Peters and E.G. Jones (eds), Cerebral Cortex, vol. 1, Plenum Press, New York, pp. 123-200.

    Google Scholar 

  • Fodor, J.A., 1983: Modularity of Mind, MIT Press, Cambridge, MA.

    Google Scholar 

  • Fodor, J., 1987: Psychosemantics, MIT Press, Cambridge, MA.

    Google Scholar 

  • Fodor, J., 1998: Concepts: Where Cognitive Science Went Wrong, Oxford University Press, Oxford.

    Google Scholar 

  • Fodor, J.A. and Pylysyn, Z., 1988: Connectionism and cognitive architecture: A critical analysis, Cognition 28, 3-72.

    Google Scholar 

  • Gawne, T.J., Kjaer, T.W., Hertz, J.A. and Richmond, B.J., 1996: Adjacent visual cortical complex cells share about 20% of their stimulus-related information, Cereb. Cortex 6, 482-489.

    Google Scholar 

  • Gelman, S.A. and Coley, J.D., 1991: Language and categorization: The acquisition of natural kind terms, in S.A. Gelman and J.P. Byrnes (eds), Perspectives on Language and Thought, Cambridge University Press, Cambridge.

    Google Scholar 

  • Grossberg, S., 1974: Classical and instrumental learning by neural networks, Progress in Theoretical Biology 3, 51-141.

    Google Scholar 

  • Grossberg, S., 2000: The complementary brain: Unifying brain dynamics and modularity, Trends in Cognitive Sciences 4, 233-246.

    Google Scholar 

  • Hancock, P.J.B., Smith, L.S. and Phillips, W.A., 1991: A biologically supported error-correcting learning rule, Neural Comp. 3, 201-212.

    Google Scholar 

  • Hartley, D., 1749/1970: Observations on Man, selections in Robert Brown (ed.), Between Hume and Mill: An Anthology of British Philosophy 1749-1843, Random House, New York.

    Google Scholar 

  • Hume, D., 1740/1978: A Treatise of Human Nature, in L.A. Selby-Bigge (ed.), Oxford University Press, Oxford.

    Google Scholar 

  • Jackson, F., 1998: From Metaphysics to Ethics: A Defence of Conceptual Analysis, Oxford University Press, Oxford.

    Google Scholar 

  • Johnston, D., Hoffman, D.A., Colbert, C. M. and Magee, J.C., 1999: Regulation of back-propagating action potentials in hippocampal neurons, Curr. Opin. Neurobiol. 9, 288-292.

    Google Scholar 

  • Kant, I., 1787/1996: Critique of Pure Reason, Hackett, Indianapolis.

    Google Scholar 

  • Katz, J., 1972: Semantic Theory, Harper & Row, New York.

    Google Scholar 

  • Kripke, S., 1972/ 1980: Naming and Necessity, Blackwell, Oxford.

    Google Scholar 

  • Lettvin, J., 1988: Forward to W.S. McCulloch, Embodiments of Mind, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Lycan, W.G., 2000: Philosophy of Language, Routledge, London.

    Google Scholar 

  • Magee, J.C. and Johnston, D., 1997: A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons, Science 275, 209-213.

    Google Scholar 

  • Malach, R., 1994: Cortical columns as devices for maximizing neuronal diversity, TINS 17, 101-104.

    Google Scholar 

  • Malinow, R., Mainen, Z.F. and Hayashi, Y., 2000: LTP mechanisms: From silence to four-lane traffic, Curr. Opin. Neurobiol. 10, 352-357.

    Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., Roth, A. and Sakmann, B., 1997a: Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex, J. Physiol. (Lond.) 500, 409-440.

    Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M. and Sakmann, B., 1997b: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science 275, 213-215.

    Google Scholar 

  • Markram, H., Pikus, D., Gupta, A. and Tsodyks, M., 1998: Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 37, 489-500.

    Google Scholar 

  • McGuire, B., Gilbert, C.D., Wiesel, T.N. and Rivlin, P.K., 1991: Targets of horizontal connections in macaque primary visual cortex, J. Comp. Neurol. 305, 370-392.

    Google Scholar 

  • Mel, B.W., 1994: Information processing in dendritic trees, Neural Comp. 6, 1031-1085.

    Google Scholar 

  • Millikan, R., 1999: A common structure for concepts of individuals, stuffs, and real kinds: More mama, more milk, and more mouse, in in E. Margolis and S. Laurence (eds), Concepts: Core Readings, MIT Press, Cambridge, MA, pp. 525-547.

    Google Scholar 

  • Minsky, M. and Papert, S., 1988: Perceptrons, 3rd edition, MIT Press, Cambridge, MA.

    Google Scholar 

  • Mountcastle, V.B., 1978: An organizing principle for cerebral function, in G.M. Edelman and V.B. Mountcastle (eds), The Mindful Brain, MIT Press, Cambridge, MA, pp. 7-50.

    Google Scholar 

  • Murphy, G., and Medin, D., 1985: The role of theories in conceptual coherence, Psych. Rev. 92, 289-316.

    Google Scholar 

  • Paulsen, O. and Sejnowski, T.J., 2000: Natural patterns of activity and long-term synaptic plasticity, Curr. Opinion Neurobiol. 10, 172-179.

    Google Scholar 

  • Peacocke, C., 1992: A Study of Concepts, MIT Press, Cambridge, MA.

    Google Scholar 

  • Phillips, W.A. and Singer, W., 1997: In search of common foundations for cortical computation, Behav. Brain Sci. 20, 657-722.

    Google Scholar 

  • Pinker, S., 1997: How the Mind Works, W.H. Norton, New York.

    Google Scholar 

  • Putnam, H., 1975: The Meaning of ‘Meaning’, in K. Gunderson (ed.), Language, Mind and Knowledge, Minnesota Studies in Philosophy of Science vol. 7, University of Minnesota, Minneapolis.

    Google Scholar 

  • Quartz, S.R. and Sejnowski, T.J., 1997: The neural basis of cognitive development: A constructivist manifesto, Behav. Brain Sci. 20, 537-596.

    Google Scholar 

  • Quine, W., 1953: Two Dogmas of Empiricism, in From a Logical Point of View, Harvard University Press, Cambridge, MA, pp. 20-46.

    Google Scholar 

  • Rey, G., 1997: Contemporary Philosophy of Mind, Blackwell, Oxford.

    Google Scholar 

  • Rosch, E. and Mervis, C., 1975: Family Resemlances: Studies in the internal structure of categories, Cogn. Psych. 7, 573-605.

    Google Scholar 

  • Rosenberg, J.R., 1997: Connectionism and cognition, in J. Haugeland (ed.), Mind Design II, MIT Press, Cambridge, MA, pp. 293-308.

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986: Learning internal representations by error propagation, in D.E. Rumelhart, J.L. McClelland and PDP Research Group (eds), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press, Cambridge, MA, vol. 1, pp. 318-362.

    Google Scholar 

  • Russell, B., 1914/ 1993: Our Knowledge of the External World, Routledge, London.

    Google Scholar 

  • Schuz, A., 1992: Randomness and constraints in the cortical neuropil, in A. Aertsen and V. Braitenberg (eds), Information Processing in the Cortex, Springer, Berlin, pp. 3-21.

    Google Scholar 

  • Segev, I., Fleshman, J.W. and Burke, R.E., 1989: Compartmental models of complex neurons, in C. Koch and I. Segev (eds), Methods in Neuronal Modeling, MIT Press, Cambridge,MA, pp. 63-96.

    Google Scholar 

  • Sejnowski, T.J., 1977: Storing covariance with nonlinearly interacting neurons, J. Math. Biol. 4, 303-321.

    Google Scholar 

  • Singer, W., 1995: Development and plasticity of cortical processing architectures, Science 270, 758-764.

    Google Scholar 

  • Smith, E. and Medin, D., 1981: Categories and Concepts, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Spruston, N., Schiller, Y., Stuart, G. and Sakmann, B., 1995: Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites, Science 268, 297-300.

    Google Scholar 

  • Stroud, B., 1977: Hume, Routledge, London.

    Google Scholar 

  • Stuart, G., Spruston, N., Sakmann, B. and Hausser, M., 1997: Action potential initiation and backpropagation in neurons of the mammalian CNS, TINS 20, 125-131.

    Google Scholar 

  • Svoboda, K., Denk, W., Kleinfeld, D. and Tank, D., 1997: In vivodendritic calcium dynamics in neocortical pyramidal neurons, Nature 385, 161-163.

    Google Scholar 

  • Thomson, A.M. and Deuchars, J., 1994: Temporal and spatial properties of local circuits in neocortex, TINS 17, 119-126.

    Google Scholar 

  • Willshaw, D.J. and Dayan, P., 1990: Optimal plasticity from matrix memories: What goes up must come down, Neural Comp. 2, 85-93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryder, D., Favorov, O.V. The New Associationism: A Neural Explanation for the Predictive Powers of Cerebral Cortex. Brain and Mind 2, 161–194 (2001). https://doi.org/10.1023/A:1012296506279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012296506279

Navigation