Skip to main content
Log in

Towards a philosophy of interdisciplinarity

An attempt to provide a classification and clarification

  • Original Paper
  • Published:
Poiesis & Praxis

Abstract

This paper aims to contribute to the expanding discourse on inter- and transdisciplinarity. Referring to well-established distinctions in philosophy of science, the paper argues in favor of a plurality of four different dimensions: Interdisciplinarity with regard to (a) objects (“ontology”), (b) knowledge/theories (epistemology), (c) methods/practices (methodology), and further, (d) problem perception/problem solving. Different philosophical thought traditions can be related to these distinguishable meanings. The philosophical framework of the four different dimensions will be illustrated by some of the most popular examples of research programs that are labeled “interdisciplinary”: nanoresearch/nanoscience/nanotechnology, complex systems theory/chaos theory, biomimicry/bionics, and technology assessment/sustainability research. Thus, a minimal philosophy of science is required to understand and foster inter- and transdisciplinarity.

Zusammenfassung

Inter- und Transdisziplinarität sind en vogue in Wissenschaft, Wirtschaft, Politik und Öffentlichkeit. Doch die Bedeutung der Begriffe ist immer noch weitgehend ungeklärt. Ziel des vorliegenden Aufsatzes ist die Stärkung und Stützung dieser expandierenden Diskussion durch Systematisierung dessen, was unter „Inter- und Transdisziplinarität“ verstanden werden kann. Die Wissenschaftsphilosophie liefert mit der Unterscheidung zwischen Gegenständen/Objekten (Ontologie), Wissen/Theorien (Epistemologie) und Methoden (Methodologie) ein Klassifikations- und Klärungsschema, das zu ergänzen ist durch (d) Probleme, Problemwahrnehmungen und Problemlösungen. Die vier Dimensionen der Interdisziplinarität werden anhand populärer Forschungsprogramme, die als „interdisziplinär“ bezeichnet werden, erläutert: Nanoforschung/Nanotechnologie, Komplexitätstheorie/Chaostheorie, Bionik und Technikfolgenabschätzung/Nachhaltungskeitsforschung. So zeigt sich, dass eine minimale Wissenschaftsphilosophie notwendig und hilfreich ist, um Inter- und Transdisziplinarität zu verstehen und die expandierende Diskussion inhaltlich zu fördern.

Résumé

La référence à l’interdisciplinarité et à la transdisciplinarité est de plus en plus présente dans les discours politiques, économiques et scientifiques, alors que le sens de ces notions est encore en grande partie indéfini. Cet article vise à systématiser ce qui peut être entendu par «interdisciplinarité et transdisciplinarité». Avec la distinction entre (a) les choses/objets (ontologie), (b) les connaissances/théories (épistémologie), et (c) les méthodes/pratiques (méthodologie), la philosophie des sciences fournit un schéma de classification et d’élucidation qui doit être complété par (d) la perception des problèmes et de leur résolution. Le cadre philosophique des quatre dimensions de l’interdisciplinarité est illustré par des programmes de recherche importants, considérés comme «interdisciplinaires» : la nanorecherche/nanotechnologie, la théorie de la complexité/théorie du chaos, la bionique et l’évaluation des choix technologiques/la recherche sur le développement durable. C’est pourquoi la philosophie des sciences constitue un outil nécessaire et utile pour comprendre l’interdisciplinarité et la transdisciplinarité et pour favoriser la discussion croissante quant au contenu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Jantsch (1972).

  2. Roco and Bainbridge (eds) (2002).

  3. For one core approach of technology assessment (TA), see: Decker (ed) (2001). More specifically: Decker and Grunwald (2001), Decker (2004).

  4. Kates et al. (2001), Norton (2005).

  5. Kockelmans (ed) (1979). For a more organizational and psychological oriented approach, see: Davis (1995).

  6. Gibbons et al. (1994).

  7. Funtowicz and Ravetz (1993), Elzinga (1995).

  8. Böhme et al. (1974), pp. 276f. See the epistemological analysis of “finalization” in: Böhme et al. (eds) (1983).

  9. Ziman (2000), Bammé (2004).

  10. Haraway (1991), Latour (1987).

  11. Chubin et al. (eds) (1986), De Bie (1970).

  12. Becker and Jahn (eds) (2006), Becker (2002).

  13. Norton (2005).

  14. Etzkowitz and Leydesdorff (eds) (1997).

  15. Thompson Klein et al. (eds) (2001).

  16. For an overview, see for instance: http://www.transdisciplinarity.ch/ and Kocka (ed) (1987) pp. 152–158, Thompson Klein (1990), Weingart and Stehr (eds) (2000).

  17. Carrier (2001).

  18. The net for transdicplinarity in sciences and humanities (td-net; see: http://www.transdisciplinarity.ch/.) has contributed to a clarification of inter- and transdisciplinarity during the last couple of years. See f.i. also: Pohl and Hirsch Hadorn (2006).

  19. See also the very helpful and substantial approach of: http://www.transdisciplinarity.ch/. However, this paper focuses more broadly on interdisciplinarity. Transdisciplinarity is understood as an (important) subset of interdisciplinarity.

  20. There are, of course, some philosophical approaches that attempt to clarify the situation in some cognate branches but they mostly just refer to very specific cases, for example: (a) The Trading zone concept: Galison (1996); (b) The Boundary object concept: Star and Griesemer (1989); (c) The Boundary work concept: Gieryn (1983); (d) The thought-style (“Denkstil”) concept: Fleck (1979 [1935]). Some general aspects are also discussed in: Schmidt (2003, 2005).

  21. Then, any theoretical approach to the heterogeneous practice of interdisciplinarity seems to be infeasible. The argument for this pessimism might be derived from the philosophy of physics or biology. Until now, there has not been a consistent philosophical approach to physics or biology. Thus, insofar as interdisciplinary research is even more complex and heterogeneous than disciplines such as physics and biology, the prospect of a philosophical theory of interdisciplinarity seems to be miserable or practically nil.

  22. Particular aspects are also mentioned in: Thompson Klein (1990), pp. 19ff; Bammé (2004).

  23. Galison and Stump (eds) (1996).

  24. Most prominently: Weinberg (1994).

  25. Such as systems theory, methodological constructivism, methodological interpretationism, rationalism, structuralism, structural sciences, and, of course, epistemology in general and, to some degree, pragmatism; further, the unity of science movement of the Vienna Circle is well known.

  26. Then, interdisciplinarity would be a time-dependent phenomenon within the historical development of sciences.

  27. Schelsky (1961).

  28. Hübenthal (1991).

  29. See, for example: Decker (ed) (2001), Grunwald (2002).

  30. In addition, there are other, more pessimistic traditions regarding “interdisciplinarity”, such as the philosophy of culture (“Kulturphilosophie”) that has been developed in the framework of New-Kantianism. The latter did not really sympathize with interdisciplinarity, rather than with disciplinarity and issues of demarcation, and highlighted the differences of various disciplines, particularly to the humanities. In the late nineteenth century, H. Rickert, W. Dilthey, W. Windelband, and others developed philosophical approaches to “natural and social sciences” or “natural sciences and humanities”. They referred to Kant’s classical work on the “conflict of the faculties”—a milestone that reflect on the tension between (traditional) disciplines. Later, in the late 1950s, C. P. Snow coined the term “The Two Cultures” in order to characterize different convictions, habits, and socialization of the disciplinary scholars. For interdisciplinarians, Snow’s clear thesis was frustrating. A bridge that might overcome the two-culture-gap seemed to be impossible. In the mid 1990s, the gap became apparent again when A. Sokal heated the “science wars” by an “experiment” with the other culture, the social scientists. The “wars” also illustrate that interdisciplinarity is a serious issue that cannot be taken for granted as its popularity might indicate. But, although the “science wars” might have shown problems, and even impossibilities, of interdisciplinarity, they also have provided us with a deep reflection on science, both on disciplinarity and interdisciplinarity, on realism and constructivism.

  31. For example, see: Thompson Klein (1990), Thompson Klein (1996), Decker (ed) (2001), Chubin et al. (eds) (1986), Weingart and Stehr (eds) (2000), and many others.

  32. Some philosophical traditions will argue reductionistically for one basic understanding and a particular core content, for instance an approach from the perspective of the scientific realism. But I will not presuppose such a position (see the end of this section); rather I will look at the various approaches.

  33. See, for example: Vollmer (1988). As many philosophers (in the Kantian tradition), Vollmer distinguishes between ontology, epistemology, and methodology. See also: Hacking (1983). Hacking reveals cognitive short cuts, argues for a special type of realism, and shows various interdependencies between the positions.

  34. The position of the realconstructivism is not fully developed in the philosophy of science, although the “new experientalism” has broadly argued in favor of it. This position traces back to Francis Bacon in the early seventeenth century. Also some aspects can be found in the pragmatist tradition. Today I. Hacking, B. Latour and S. Woolgar argue in favour of this position: Latour and Woolgar (1979), Hacking (1983), Latour (1987). Here, a severe debate between Latour (“realconstructivism”) and the Edinburgh School of Constructivism (“social constructivism”, David Bloor et al.) has emerged; see for instance: Bloor (1999), Latour (1999).

  35. Ontological reductionism is known as the stance stating that the world consists (totally) of atoms or other fundamental material entities (“materialism”) or, on the contrary, of mental entities (“idealism”).

  36. They do not exist since the beginning of the world. It might be disputed whether these objects are by themselves “interdisciplinary” or, on the contrary, whether they are just perceived, described, or shaped under an interdisciplinary perspective. Although it might be controversial whether a particular object is evidently labeled “interdisciplinary”—for instance, a technical object may be seen as a disciplinary object of engineering sciences or as an interdisciplinary object, and it should not be doubted that these are the same objects—interdisciplinary objects seem to exist at least for a certain time.

  37. U. Hübenthal identifies “concept interdisciplinarity” as a specific type of interdisciplinarity, referring to systems theory, cybernetics, synergetics, information theory, and others. See: Hübenthal (1991). See for a general perspective of complexity and systems theory: Kline (1995).

  38. Examples are the Hempel–Oppenheim-scheme of the covering laws model or, in opposition, a general hermeneutics.

  39. Mittelstraß (2005), Pohl and Hirsch Hadorn (2006).

  40. In other branches it is clear that hermeneutics is not reducible to empirical measurement and quantitative objectivity; empirical measurement and data analysis methodologies are not reducible to hermeneutics.

  41. Habermas (1970).

  42. See f.i. the net for transdicplinarity in sciences and humanities (td-net; http://www.transdisciplinarity.ch/.) and Jaeger and Scheringer (1998).

  43. To some extend the school of methodological constructivism has tackled this question, f.i.: Janich (ed) (1992), and see below. However, until now it is unclear what the basic criteria are to specify anything as a “problem”. The term “problem” remains an unspecified label. A “philosophy of problems” has not been developed until now. However, regarding “interdisciplinarity” a demarcation is assumed to exist. “Interdisciplinarity” considers that its problems are science-external, societal pressing, and policy relevant. Obviously, sciences (= societal-external = sciences-internal) are regarded from the perspective of society (= science-external = societal-internal). See for this issue from a sociological perspective: Cozzens and Gieryn (eds) (1990).

  44. The term “wicked problem” was originally coined by: Rittel and Webber (1973). See the epistemological discussion in: Norton (2005), pp. 131ff/159ff. Particular aspects have been discussed in a general and inspiring way by: Jaeger and Scheringer (1998), pp. 10–25; Thompson Klein (2000), pp. 3–24.

  45. Usually a distinction is presupposed between science-internal and science-external problems; this traces back to heated debates in the philosophy of science on internalism and externalism (cp. Böhme et al. (1974), pp. 276f).

  46. This is a well-known position in German speaking countries, one which is not adequately recognized by the international community of philosophy of science: Lorenzen (1974), Janich (ed) (1984), Janich (ed) (1992).

  47. This depends again on the philosophical background influencing one’s stance: most pragmatists (in the tradition of C. S. Peirce) and methodological constructivists (in the tradition of H. Dingler and P. Lorenzen) would argue that objects, knowledge, and problems/solutions are a mere consequence of methods. Reality is deducible from methods. They believe that methods constitute objects, knowledge and problems/solutions. They would reduce interdisciplinarity to interdisciplinary methods.

  48. This is related to the various motives mentioned in Sect. 3. Both, the economic motive and the societal-ethical motive mainly guide problem-interdisciplinarity and to some degree method-interdisciplinarity; whereas the theory-motive arises mostly in theory- and in object-interdisciplinarity.

  49. Roco and Bainbridge (eds) (2002); see further: Mehta (2002).

  50. Feynman (2003 [1959]).

  51. Nano research is based on technological advancements: the scanning tunneling microscopy (STM) and the atomic force microscope (AFM), which stem from developments in the early 1980’s.

  52. This situation is quite similar to that in biomedical engineering. New technoscientific objects (“hybrids”) emerge (cp. Latour (1987)).

  53. Indeed, there may an “ontological” boundary or a boundary zone between the microscale and the mesoscale exist on which the given or constructed objects can be located (“layered-view of physicalism”). The best arguments we have might be derived from physics. But it is, of course, an open question whether this view is convincing.

  54. Mainzer (1996), Schmidt (2001), Kornwachs (ed) (1984).

  55. Haken (1980).

  56. Jantsch (1980).

  57. Mainzer (2005), pp. v.

  58. Nersessian (2005). In the framework of complexity and systems theory: Kline (1995).

  59. The German term for “structural sciences” is: “Strukturwissenschaften”. Cp. Weizsäcker (1974), pp. 22f.; Küppers (2000), pp. 89–106.

  60. Weizsäcker (1974), pp. 23. Structural sciences focus on mathematical structures. In the 1950s, Weizsäcker had in mind conceptual approaches such as Information Theory, Cybernetics, Game Theory, and the (biological based) General Systems Theory.

  61. According to Carl Friedrich von Weizsäcker, structural sciences such as complex systems theory reveal an “abstract structural unity of reality (‘Nature’)” (Weizsäcker (1974), pp. 23). Klaus Mainzer shows this explicitly: Mainzer (2005). An advanced and classical structuralist approach of the philosophy of science is provides by: Worrall (1989).

  62. See, for example: Benyus (2002), Nachtigall (1994). In a slightly different way Julie Thompson Klein speaks about “borrowing” with regard to methods; see: Thompson Klein (2000), pp. 3–24.

  63. Maier and Zoglauer (eds) (1994), Schmidt (2002).

  64. Benyus (2002).

  65. Hill (1998).

  66. The transfer of bionics can be characterized as an analogy method. Analogies as instruments for scientific discoveries and explanations are discussed by: Nersessian (2002), Nersessian and Magnani (eds) (2002). Methodological aspects of interactions, “analogy and homology”, “roles of analogy” and “metaphors” reflected by Cohen (1994).

  67. Galison (1996).

  68. Mantegna and Stanley (2000), McCauley (2004).

  69. Another very convincing approach to a methodologically-based understanding of interdisciplinarity (as a scientific practice) is given in: Hoffmann (2005).

  70. See, for instance: Decker (ed) (2001), Decker (2004), Chubin et al. (eds) (1986). In more detail, for example: Gethmann et al. (2004). For detailed information contact: http://www.transdisciplinarity.ch/.

  71. Jantsch (1972), also: Jantsch (1970).

References

  • Bammé A (2004) Science Wars. Von der akademischen zur postakademischen Wissenschaft. Campus, Frankfurt

    Google Scholar 

  • Becker E (2002) Transformation of social and ecological issues into transdisciplinary research. In: UNESO (ed) (2002) Knowledge for sustainable development. An insight into the encyclopedia of life support systems, vol 3. UNESO, Paris, pp 949–963

  • Becker E, Jahn T (eds) (2006) Soziale Ökologie. Grundzüge einer Wissenschaft von den gesellschaftlichen Naturverhältnissen. Campus, Frankfurt

    Google Scholar 

  • Benyus JM (2002) Biomimicry: innovation inspired by nature. HarperCollins, New York

    Google Scholar 

  • Bloor D (1999) Anti-Latour. Stud Hist Phil Sci 30(1):81–122

    Article  Google Scholar 

  • Böhme G, van den Daele W, Krohn W (1974) Die Finalisierung der Wissenschaft. In: Diederich W (ed) Theorien der Wissenschaftsgeschichte. Suhrkamp, Frankfurt

    Google Scholar 

  • Böhme G et al (eds) (1983) Finalization in science. The social orientation of scientific progress. Reidel, Dordrecht, pp 276–311

    Google Scholar 

  • Carrier M (2001) Business as uual: on the prospect of normality in scientific research. In: Decker M (ed) Interdisciplinarity in technology assessment. implementation and its chances and limits. Springer, Berlin, pp 25–31

    Chapter  Google Scholar 

  • Chubin S, Porter AL, Rossini FA, Connolly T (eds) (1986) Interdisciplinary analysis and research. theory and practice of problem-focused research and development. Mt Lomond Publications, Airy

    Google Scholar 

  • Cohen IB (1994) Interactions. Some contacts between the natural sciences and the social sciences. MIT Press, Cambridge

    Book  Google Scholar 

  • Cozzens SE, Gieryn TF (eds) (1990) Theories of science in society. University Press, Indiana

    Google Scholar 

  • Davis JR (1995) Interdisciplinary courses and team teaching. Oryx Press, Phoenix

    Google Scholar 

  • De Bie P (1970) Problemorientierte Forschung. Bericht an die Unesco. Ullstein, Frankfurt

    Google Scholar 

  • Decker M (ed) (2001) Interdisciplinarity in technology assessment. Implementation and its chances and limits. Springer, Berlin

    Google Scholar 

  • Decker M, Grunwald A (2001) Rational technology assessment as interdisciplinary research. In: Decker M (ed) Interdisciplinarity in technology assessment. Implementation and its chances and limits. Springer, Berlin, pp 33–60

    Chapter  Google Scholar 

  • Decker M (2004) The role of ethics in interdisciplinary technology assessment. Poiesis Praxis 2(2–3):139–156

    Article  Google Scholar 

  • Elzinga A (1995) Shaping worldwide consensus: the orchestration of global climate change research. In: Elzinga A, Landstrom C (eds) (1995) Internationalism in science. Taylor & Graham, London

    Google Scholar 

  • Etzkowitz H, Leydesdorff L (eds) (1997) Special issue on science policy dimensions of the triple helix of university--industry--government relations. Sci Publ Policy 24(1):2–52

  • Feynman RE (2003 [1959]) There’s plenty of room at the bottom. In: http://www.zyvex.com/nanotech/feynman.html. (source May 2007)

  • Fleck L (1979 [1935]) Genesis and development of a scientific fact. In: Trenn TJ, Merton RK (eds) University of Chicago Press, Chicago (first edition: Fleck L (1935) Entstehung und Entwicklung einer wissenschaftlichen Tatsache? Einführung in die Lehre vom Denkstil und Denkkollektiv. Schwabe & Co., Basel)

  • Funtowicz SO, Ravetz JR (1993) Science for the post-normal age. Futures 9/1993:739–755

    Article  Google Scholar 

  • Galison P (1996) Computer Simulations and the Trading Zone. In: Galison P, Stump DJ (eds) The disunity of science. boundaries, contexts, and power. Stanford University Press, Stanford, pp 118–157

    Google Scholar 

  • Gethmann CF et al (2004) Gesundheit nach Maß? Eine transdisziplinäre Studie zu den Grundlagen eines dauerhaften Gesundheitssystems. Akademie Verlag, Berlin

    Google Scholar 

  • Gibbons M et al (1994) The new production of knowledge. SAGE, London

    Google Scholar 

  • Gieryn T (1983) Boundary work and the demarcation of science from non-science. Strains and interests of professional ideologies of scientists. Am Sociol Rev 48:781–795

    Article  Google Scholar 

  • Grunwald A (2002) Technikfolgenabschätzung—eine Einführung. Sigma Verlag, Berlin

    Google Scholar 

  • Habermas J (1970) Toward a rational society. Beacon Press, Boston

    Google Scholar 

  • Hacking I (1983) Representing and intervening introductory topics in the philosophy of natural science. Cambridge University Press, New York

    Book  Google Scholar 

  • Haken H (1980) Dynamics of synergetic systems. Springer, Berlin

    Book  Google Scholar 

  • Haraway D (1991) Simians, cyborgs, and women: the reinvention of nature. Routledge, New York

    Google Scholar 

  • Hill B (1998) Erfinden mit der Natur. Strukturen und Funktionen biologischer Systeme als Innovationspotentiale für die Technik. Shaker Verlag, Aachen

    Google Scholar 

  • Hoffmann MHG (2005) Logical argument mapping: a method for overcoming cognitive problems of conflict management. Int J Confl Manage 16(4):305–335

    Google Scholar 

  • Hübenthal U (1991) Interdisziplinäres Denken. Hirzel, Stuttgart

    Google Scholar 

  • Jaeger J, Scheringer M (1998) Transdisziplinarität. Problemorientierung ohne Methodenzwang. Gaia 7/1:10–25

    Google Scholar 

  • Janich P (ed) (1984) Methodische Philosophie. Beiträge zum Begründungsproblem der exakten Wissenschaften in Auseinandersetzung mit Hugo Dingler. Bibliographisches Institut, Mannheim

    Google Scholar 

  • Janich P (ed) (1992) Entwicklungen der methodischen Philosophie. Suhrkamp, Frankfurt

    Google Scholar 

  • Jantsch E (1970) Inter- and transdisciplinarity university: a systems approach to education and innovation. Policy Sci 1:403–428

    Article  Google Scholar 

  • Jantsch E (1972) Towards interdisciplinarity and transdisciplinarity in education and innovation. In: CERI (ed) Interdisciplinarity. OECD, Paris, pp 97–121

  • Jantsch E (1980) The self-organizing universe. Scientific and human implication. Pergamon, New York

    Google Scholar 

  • Kates RW et al (2001) Sustainability science. Science 292:641–642

    Article  Google Scholar 

  • Kline SJ (1995) Conceptual foundations of multidisciplinary thinking. Stanford University Press, Stanford

    Google Scholar 

  • Kocka J (ed) (1987) Interdisziplinarität. Praxis—Herausforderung—Ideologie. Suhrkamp, Frankfurt

    Google Scholar 

  • Kockelmans JJ (ed) (1979) Interdisciplinarity and higher education. Penn State University Press, University Park

    Google Scholar 

  • Kornwachs K (ed) (1984) Offenheit—Zeitlichkeit—Komplexität. Zur Theorie der Offenen Systeme. Campus, Frankfurt

    Google Scholar 

  • Küppers B-O (2000) Strukturwissenschaften als Bindeglied zwischen den Natur- und Geisteswissenschaften. In: Küppers B-O (ed) Die Einheit der Wirklichkeit. Zum Wissenschaftsverständnis der Gegenwart. Fink, München, pp. 89–106

    Google Scholar 

  • Latour B (1987) Science in action. how to follow scientists and engineers through society. Harvard University Press, Cambridge

    Google Scholar 

  • Latour B (1999) For David Bloor ... and beyond: a reply to David Bloor’s ‘anti-Latour’. Stud Hist Phil Sci 30(1):113–129

    Article  Google Scholar 

  • Latour B, Woolgar S (1979) Laboratory life. Princeton University Press, Princeton

    Google Scholar 

  • Lorenzen P (1974) Konstruktive Wissenschaftstheorie. Suhrkamp, Frankfurt

    Google Scholar 

  • Maier W, Zoglauer T (eds) (1994) Technomorphe Organismuskonzepte. Modellübertragungen zwischen Biologie und Technik. Frommann Holzboog, Stuttgart

    Google Scholar 

  • Mainzer K (1996) Thinking in complexity. The complex dynamics of matter, mind, and mankind. Springer, Heidelberg

    Google Scholar 

  • Mainzer K (2005) Symmetry and complexity. the spirit and beauty of nonlinear science. World Scientific, Singapore

    Google Scholar 

  • Mantegna RN, Stanley HE (2000) An introduction to econophysics: correlations and complexity in finance. Cambridge University Press, Cambridge

    Google Scholar 

  • McCauley JL (2004) Dynamics of markets: econophysics and finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mehta MD (2002) Nanoscience and nanotechnology: assessing the nature of innovation in these fields Bull Sci Technol Soc 22(4):269–273

    Article  Google Scholar 

  • Mittelstraß J (2005) Methodische Transdisziplinarität, Technikfolgenabschätzung. Theorie und Praxis 14(2):18–23

    Google Scholar 

  • Nachtigall W (1994) Erfinderin Natur. Rasch & Röhrig, Hamburg

    Google Scholar 

  • Nersessian NJ (2002) Maxwell and the method of physical analogy. In: Malament D (ed) Reading in natural philosophy. Open Court Publishers, Chicago

    Google Scholar 

  • Nersessian NJ, Magnani L (eds) (2002) Model-based reasoning: science, technology, and values. Kluwer, New York

    Google Scholar 

  • Nersessian NJ (2005) Interpreting scientific and engineering practices: Integrating the cognitive, social, and cultural dimensions”. In: Gorman M et al (eds) Scientific and technological thinking. Erlbaum, Mahwah, pp 17–56

    Google Scholar 

  • Norton BG (2005) Sustainability. A philosophy of adaptive ecosystem management. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Pohl C, Hirsch Hadorn G (2006) Gestaltungsprinzipien für die transdisziplinäre Forschung. oekom, München

    Google Scholar 

  • Rittel HW, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4:155–169

    Article  Google Scholar 

  • Roco MC, Bainbridge WS (eds) (2002) Converging technologies for improving human performance. nanotechnology, biotechnology, information technology, and cognitive science. National Science Foundation, Arlington

    Google Scholar 

  • Schelsky H (1961) Einsamkeit und Freiheit. Zur sozialen Idee der deutschen Universität. Kölner Zeitschrift für Soziologie und Sozialpsychologie 13:702–704

    Google Scholar 

  • Schmidt JC (2001) Was umfaßt heute Physik? Aspekte einer nachmodernen Physik. Philosophia Naturalis 38(2):273–299

    Google Scholar 

  • Schmidt JC (2002) Vom Leben zur Technik? Kultur- und wissenschaftsphilosophische Aspekte der Natur-Nachahmungsthese in der Bionik. Dialektik, Zeitschrift für Kulturphilosophie 2:129–142

    Google Scholar 

  • Schmidt JC (2003) Wundstelle der Wissenschaft. Wege durch den Dschungel der Interdisziplinarität. Scheidewege 33:169–189

    Google Scholar 

  • Schmidt JC (2005) Dimensionen der Interdisziplinarität. Wege zu einer Wissenschaftstheorie der Interdisziplinarität, Technikfolgenabschätzung. Theorie und Praxis 14(2):12–17

    Google Scholar 

  • Star SL, Griesemer JR (1989) Institutional ecology: ‘Translations’ and boundary objects Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology 1907–39. Soc Stud Sci 19:387–420

    Article  Google Scholar 

  • Thompson Klein J (1990) Interdisciplinarity: history, theory, and practice. Wayne State University, Detroit

    Google Scholar 

  • Thompson Klein J (1996) Crossing boundaries: knowledge, disciplinarities, and interdisciplinarities. University Press of Virgina, Charlottesville

    Google Scholar 

  • Thompson Klein J (2000) A conceptual vocabulary of interdisciplinary science. In: Weingart P, Stehr N (eds) Practising interdisciplinarity. University of Toronto Press, Toronto, pp 3–24

    Google Scholar 

  • Thompson Klein J et al (eds) (2001) Transdisciplinarity: joint problem solving among science, technology, and society. Birkhäuser, Basel

    Google Scholar 

  • Vollmer G (1988) Was können wir wissen? Die Erkenntnis der Natur. Hirzel, Stuttgart

    Google Scholar 

  • Weinberg S (1994) Dreams of a final theory. the scientist’s search for the ultimate laws of nature. Vintage Books, New York

    Google Scholar 

  • Weingart P, Stehr N (eds) (2000) Practising interdisciplinarity. University of Toronto Press, Toronto

    Google Scholar 

  • Weizsäcker CF v (1974) Die Einheit der Natur. München. dtv

  • Worrall J (1989) Structural realism: the best of both worlds? Dialectica 43:99–124

    Article  Google Scholar 

  • Ziman J (2000) Postacademic science: constructing knowledge with networks and norms. In: Segerstrale U (ed) Beyond science wars: The missing discourse about science and society. State University of New York Press, New York, pp 135–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J.C. Towards a philosophy of interdisciplinarity. Poiesis Prax 5, 53–69 (2008). https://doi.org/10.1007/s10202-007-0037-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10202-007-0037-8

Keywords

Navigation