Skip to main content
Log in

Evolution of cell and chromosome structure in eukaryote

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The analysis of the data so far available indicates that eukaryotic chromosome with splicing characteristics appeared quite early in evolution possibly parallel and not sequential to the prokaryotic system. The endosymbiotic origin of the eukaryotic cell involved a primitive undifferentiated unicellular eukaryote and a photosynthetic or non-photosynthetic microbe. Certain regulatory genes of extra-cellular organelles were transferred later through molecular hybridization to the nucleus. The evolution of multicellularity and sexual reproduction led to the origin of innumerable eukaryotic forms in the late precambrian period. This new concept of the author can account for the evolution of complex eukaryotic chromosome and harmonious functioning of extra-cellular organelles with the nucleus. The concept also explains the sudden spurt of innumerable eukaryotic fossils at the early palaeozoic era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beale, J.H., and Knowles, J.K.C. (1976). Interspecific transfer of mitochondria to Paramoecium aurelia.- Mol Genet 143: 197–201.

    Google Scholar 

  2. Bennett, J., and Radcliffe, C. (1975). Plastid DNA replication and plastid division in the garden pea.- FEBS Lett 56: 222–225.

    Google Scholar 

  3. Bogorad, L., Davidson, J.H., Hanson, M.R., and Mets, L. (1975). Intergenomic cooperation in the synthesis of chloroplast ribosomes of Chlamydomonas.- (Abst) XII Int Bot Congr: 398.

  4. Cavalier-Smith, T. (1975). The origin of nuclei and mitochondria of eukaryotic cells.- Nature (London) 256: 463–468.

    Google Scholar 

  5. Darnell, J.E. (1978). Implications of RNA-DNA splicing in evolution of eukaryotic cells.- Science 202: 1257–1260.

    Google Scholar 

  6. Dorn, G. (1976). In G.D. Fasman, ed., Handbook of biochemistry and molecular biology. Cleveland: CRC Press, 792 p.

    Google Scholar 

  7. Evstigneev, V.B. (1975). On the evolution of photosynthetic pigments. Origin of life 6: 435–439.

    Google Scholar 

  8. Hansan, E.D. (1976). Major evolutionary trends in the animal protists. J Protozool 23: 4–12.

    Google Scholar 

  9. Jeffreys, A.J., and Flawell, R.A. (1977). A physical map of the DNA regions flanking the rabbit β globin gene.- Cell 12: 429–440.

    Google Scholar 

  10. Kislev, N., and Eisenstadt, J.M. (1972). Protein synthesis in mitochondria of Euglena gracilis.- Eur J Biochem 31: 226–229.

    Google Scholar 

  11. Mahler, H.R., and Raff, R.A. (1975). The evolutionary origin of mitochondrion. A nonsymbiotic model.- Int Rev Cytol 43: 2–124.

    Google Scholar 

  12. Margulis, L. (1976). The theme (mitotic cell division) and the variations (protists) implications for higher taxa.- Taxon 25: 340–391.

    Google Scholar 

  13. Olins, A.L., and Olins, D.E. (1974). Spheroid chromatin units (v Bodies). - Science 183: 330.

    Google Scholar 

  14. Pontecorvo, G. (1973). Microbial genetics: retrospect and prospect. Proc R Soc Biol London Ser B 158: 1–23.

    Google Scholar 

  15. Sharma, A.K. (1978). Change in chromosome concept.- Proc Indian Acad Sci 87B: 161–190.

    Google Scholar 

  16. Sharma, A.K. (1983). Additional genetic materials in chromosomes.- In P.E. Brandham and M.D. Bennett, eds., Kew chromosome conference II, 33–42. London: George Allen and Unwin.

    Google Scholar 

  17. Sharma, A.K. (1984). “Dynamic DNA and chromosome structure” (in Symp Newer Concepts of Chromosomes).- In V.L. Chopra, B.C. Joshi, R.P. Sharma and H.C. Bansal, eds., Genetics: New frontiers. Proc XV Int Congr Genetics 1, 205–211.

    Google Scholar 

  18. Sharma, A.K. (1984). Additional genes - enigma in biology.- Proceedings Presidential accress: Indian National Science Acadmey New Delhi B50: 1–9.

    Google Scholar 

  19. Stutz, E., and Noll, H. (1967). Characterization of cytoplasmic and chloroplast polysomes in plants: evidence of three classes of ribosomal RNA in nature.- Proc Natl Acad Sci (Wash) 57: 774–781.

    Google Scholar 

  20. Tiemeier, D.C., Tilghman, S.M., Polsky, F.I., Seidman, J.G., Leder, A., Edgell, M.H., and Leder, P. (1978). A comparison of two cloned mouse β-globin genes and their surrounding and intervening sequences.- Cell 14: 237–245.

    Google Scholar 

  21. Tzagoloff, A., Akai, A., and Needleman, R.B. (1975). Assembly of the mitochondrial membrane system.- J Biol Chem250: 8228–8235.

    Google Scholar 

  22. Wilkie, D. (1973). Cytoplasmic genetic systems in eukaryotic cells. Br Med Bull 29: 263–268.

    Google Scholar 

  23. Woese, C.R., and Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms.- Proc Natl Acad Sci USA 74: 5088–5090.

    Google Scholar 

  24. Yaffe, M., and Schetz, G. (1984). Trends in biochemical sciences. I (N): 179–181.

    Google Scholar 

  25. Zhdanov, V.M. (1975). Integration of viral genome.- Nature (London) 256: 471–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.K. Evolution of cell and chromosome structure in eukaryote. Acta Biotheor 35, 69–76 (1986). https://doi.org/10.1007/BF00118367

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118367

Keywords

Navigation