Skip to main content
Log in

Representation in the genome and in other inheritance systems

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

There is ongoing controversy as to whether the genome is a representing system (Sterelny K., Smith K.C. and Dickson M. 1996. Biol. Philos. 11: 377–403; Griffiths P.E. 2001. Philos. Sci. 68: 394–412). Although it is widely recognised that DNA carries information, both correlating with and coding for various outcomes, neither of these implies that the genome has semantic properties like correctness or satisfaction conditions (Godfrey-Smith P. 2002. In: Wolenski J. and Kajania-Placek K. (eds), In the Scope of Logic, Methodology, and the Philosophy of Sciences, Vol. II. Kluwer, Dordrecht, pp. 387–400). Here a modified version of teleosemantics is applied to the genome to show that it does indeed have semantic properties – there is representation in the genome. The account differs in three respects from previous attempts to apply teleosemantics to genes. It emphasises the role of the consumer of representations (in addition to their mode of production). It rejects the standard assumption that genetic representation can be used to explain the course of an organism’s development. And it identifies the explanatory role played by representational properties of the genome. A striking consequence of this account is that other inheritance systems could also be representational. Thus, a version of the parity thesis is accepted (Griffiths P.E. 2001. Philos. Sci. 68: 394–412). However, the criteria for being an inheritance system are demanding, so semantic properties are not ubiquitous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts B., Bray D., et al. (2004) Essential Cell Biology. Garland Science, New York & Abingdon

    Google Scholar 

  • Dennett D.C. (1981) True believers: the intentional strategy and why it works. In: Heath A.F. (ed.) Scientific Explanation. O.U.P., Oxford

    Google Scholar 

  • Dretske F. (1981) Knowledge and the Flow of Information. MIT Press, Cambridge, M.A

    Google Scholar 

  • Field H. (1978) Mental representation. Erkenntnis 13: 9–61

    Article  Google Scholar 

  • Flatt T. (2005) The evolutionary genetics of canalization. Quart. Rev. Biol. 80(3): 287–316

    Article  Google Scholar 

  • Godfrey-Smith P. (1991) Signal, decision, action. J. Philos. 88: 709–722

    Article  Google Scholar 

  • Godfrey-Smith P. (1993) Functions: consensus without unity. Pacific Philos. Quart. 74: 196–208

    Google Scholar 

  • Godfrey-Smith P. (1999) Genes and codes: lessons from the philosophy of mind. In: Hardcastle V. (ed.) Where Biology Meets Psychology: Philosophical Essays. MIT Press, London/Cambridge, MA

    Google Scholar 

  • Godfrey-Smith P. (2000a) Information, arbitrariness and selection. Philos. Sci. 67: 202–207

    Article  Google Scholar 

  • Godfrey-Smith P. (2000b) On the theoretical role of “genetic coding”. Philos. Sci. 67: 26–44

    Article  Google Scholar 

  • Godfrey-Smith P. (2002) On genetic information and genetic coding In: Gardenfors P., Wolenski J., Kajania-Placek K. (eds) In the Scope of Logic, Methodology, and the Philosophy of Science, Vol. II. Kluwer, Dordrecht. pp. 387–400

    Google Scholar 

  • Godfrey-Smith P. (2006) Information in biology. In: Hull D., Ruse M. (eds) The Cambridge Companion to the Philosophy of Biology. CUP, Cambridge

    Google Scholar 

  • Grice P. (1957) Meaning. Philos. Rev. 66: 377–388

    Article  Google Scholar 

  • Griffiths P.E. (1993) Functional analysis and proper functions. Brit. J. Philos. Sci. 44: 409–422

    Article  Google Scholar 

  • Griffiths P.E. (2001) Genetic information: a metaphor in search of a theory. Philos. Sci. 68: 394–412

    Article  Google Scholar 

  • Griffiths P.E. (2005) The fearless vampire conservator: Philip Kitcher, genetic determinism and the informational gene. In: Neumann-Held E.M., Rehmann-Sutter C. (eds) Genes in Development: Re-reading the Molecular Paradigm. Duke University Press, Durham, NC

    Google Scholar 

  • Griffiths P.E., Gray R.D. (2005) Discussion: three ways to misunderstand developmental systems theory. Biol. Philos. 20: 417–425

    Article  Google Scholar 

  • Jablonka E. (2002) Information: its interpretation, its inheritance, and its sharing. Philos. Sci. 69: 578–605

    Article  Google Scholar 

  • Jablonka E., Lamb M.J. (1995) Epigenetic Inheritance and Evolution: The Lamarkian Dimension. OUP, Oxford/New York

    Google Scholar 

  • Jablonka E., Lamb M.J. (2005) Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. MIT Press, Cambridge, MA

    Google Scholar 

  • Lehrman D.S. (1970) Semantic and conceptual issues in the nature-nurture problem. In: Lehrman D.S. (ed.) Development & Evolution of Behaviour. W. H. Freeman, & Co, San Francisco pp 17–52

    Google Scholar 

  • Lewontin R. (1978) Adaptation. Sci. Am. 239: 156–169

    Article  Google Scholar 

  • Maclaurin, J. 2002. The resurrection of innateness. Monist 85(1): 105–130

    Google Scholar 

  • Mameli M. (2005) The inheritance of features. Biol. Philos. 20: 365–399

    Article  Google Scholar 

  • Maynard Smith J. (2000) The concept of information in biology. Philos. Sci. 67: 177–194

    Article  Google Scholar 

  • Maynard Smith J., Szathmáry E. (1995) The Major Transitions in Evolution. Freeman, Oxford

    Google Scholar 

  • Millikan R.G. (1996) Pushmi-pullyu representations. In: Tomberlin J. (ed.) Philosophical Perspectives, Vol. 9. Ridgeview Publishing, Atascadero, CA pp 185–200

    Google Scholar 

  • Millikan R.G. (2000) On Clear and Confused Ideas. Cambridge University Press, Cambridge

    Google Scholar 

  • Millikan R.G. (2004) Varieties of Meaning. MIT Press, London/Cambridge MA

    Google Scholar 

  • Moss L. (2001) Deconstructing the gene and reconstructing molecular developmental systems. In: Oyama S., Griffiths P.E., Gray R.D. (eds) Cycles of Contingency: Developmental Systems and Evolution. MIT Press, London/Cambridge, MA

    Google Scholar 

  • Moss L. (2003) What Genes Can’t Do. MIT Press, London, Cambridge, MA

    Google Scholar 

  • Oyama S. (1985) The Ontogeny of Information: Developmental Systems and Evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Papineau D. (2003) Is representation rife? Ratio 16: 107–123

    Article  Google Scholar 

  • Sarkar S. (2004) Genes encode information for phenotypic traits. In: Hitchcock C. (ed.) Contemporary Debates in Philosophy of Science. Oxford, Blackwell pp 259–274

    Google Scholar 

  • Schlosser G. and Wagner G.P. (eds) 2004. Modularity in Development and Evolution. University of Chicago Press, London/Chicago

  • Shannon C.E. (1949) The mathematical theory of communication. In: Shannon C.E., Weaver W. (eds) The Mathematical Theory of Communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shea N. 2007. Consumers need information: supplementing telesemantics with an input condition. Philos. Phenomen. Res. 75(2)

  • Stegmann U.E. (2005) Genetic information as instructional content. Philos. Sci. 72(3): 425–443

    Article  Google Scholar 

  • Sterelny K. (2000) The “genetic program” program: a commentary on Maynard Smith on information in biology. Philos. Sci. 67: 195–201

    Article  Google Scholar 

  • Sterelny K. (2004) Symbiosis, evolvability, and modularity. In: Schlosser G., Wagner G.P. (eds) Modularity in Development and Evolution. University of Chicago Press, London/Chicago

    Google Scholar 

  • Sterelny K., Smith K.C., Dickson M. (1996) The extended replicator. Biol. Philos. 11: 377–403

    Article  Google Scholar 

  • Weaver W. 1949. Recent contributions to the mathematical theory of communication. In: Shannon C.E. and Weaver W. (eds), The Mathematical Theory of Communication

  • Weber M. (2005) Philosophy of Experimental Biology. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Wheeler M. 2003. Do genes code for traits? In: Rojszczak A., Cachro J. and Kurczewski G. (eds), Philosophical Dimensions of Logic and Science: Selected Contributed Papers from the 11th International Congress of Logic, Methodology, and Philosophy of Science. Dortrecht, Kluwer. Synthese Library 320: 151–164

  • Wheeler M. Traits, genes and coding. In: Matthen M. and Stephens C. (eds.), Handbook of the Philosophy of Biology. Elsevier, London/Amsterdam, (in press)

Download references

Acknowledgements

Many thanks to the following for comments on this paper and earlier versions of this material: Peter Godfrey-Smith, Susan Hurley, Matteo Mameli, James Maclaurin, Ulrich Stegmann and Kim Sterelny; and audiences at the Universities of Oxford, Reading and at the Intelligent Autonomous Systems Laboratory at the University of Western England. The author gratefully acknowledges the support of the British Academy, which funded this work through a postdoctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shea, N. Representation in the genome and in other inheritance systems. Biol Philos 22, 313–331 (2007). https://doi.org/10.1007/s10539-006-9046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-006-9046-6

Key words

Navigation