Skip to main content

Hierarchical Differential Evolution for Parameter Estimation in Chemical Kinetics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5351))

Abstract

Parameter estimation, a key step in establishing the kinetic models, can be considered as a numerical optimization problem. Many optimization techniques including evolutionary algorithms have been applied to it, yet their efficiency needs further improvement. This paper proposes a hierarchical differential evolution (HDE) in which individuals are organized in a hierarchy and mutation base is selected based on the hierarchical structure. Additionally, the scaling factor of HDE is adjusted according to both the hierarchy and the search process, elaborately balancing the exploration and exploitation. To demonstrate the performance of HDE, experiments are carried out on kinetic models of two chemical reactions: pyrolysis and dehydrogenation of benzene as well as supercritical water oxidation. The results show that the proposed algorithm is an efficient and robust technique for kinetic parameter estimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, B.S., James, W.T., Paul, I.B., William, H.G.: Global Dynamic Optimization for Parameter Estimation in Chemical Kinetics. J. Phys. Chem. 110, 971–976 (2006)

    Google Scholar 

  2. Bailey, J.E., Ollis, D.E.: Biochemical Engineering Fundamentals. McGraw-Hill, New York (1986)

    Google Scholar 

  3. Denn, M.M.: Optimization by Variational Methods. McGraw-Hill, New York (1969)

    Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  5. Dorigo, M.: Optimization, Learning and Natural Algorithms, Ph.D thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)

    Google Scholar 

  6. Kennedy, K., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. IEEE Int. Conf. Neural Netw., pp. 1942–1948 (1995)

    Google Scholar 

  7. Storn, R., Price, K.V.: Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global Opt. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yan, X.F., Chen, D.Z., Hu, S.X., Ding, J.W.: Estimation of Kinetic Parameters Using Chaos Genetic Algorithms. Journal of Chemical industry and Engineering 53(8), 810–814 (2002)

    Google Scholar 

  9. Zhang, B., Chen, D.Z., Rao, J.: Estimation of Kinetic Parameters by Using Eugenic Evolution Programming. Journal of Chemical Engineering of Chinese Universities 18(5), 638–642 (2004)

    Google Scholar 

  10. Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  11. Kennedy, J., Mendes, R.: Population Structure and Particle Swarm Performance. In: Proc. Congr. Evolutionary Computation, pp. 1671–1676 (2002)

    Google Scholar 

  12. Suganthan, P.N.: Particle Swarm Optimizer with Neighborhood Operator. In: Proc. Congr. Evolutionary Computation, pp. 1958–1962 (1999)

    Google Scholar 

  13. Janson, S., Middendorf, M.: A Hierarchical Particle Swarm Optimizer and Its Adaptive Variant. IEEE Transaction on Systems, Man, and Cybernetics—Part B: Cybernetics 35(6) (2005)

    Google Scholar 

  14. Standen, A.: Kirk-Othmer Encyclopedia of Chemical Technology, 2nd edn., vol. 7, p. 191. Interscience Publishers, New York (1972)

    Google Scholar 

  15. Yokata, T., Sakaguchi, S., Ishii, Y.: Aerobic Oxidation of Benzene to Biphenyl Using a Pd(II)/Molybdovanadophosphoric Acid Catalytic System. Adv. Synth. Catal. 344(8) (2002)

    Google Scholar 

  16. Zhu, Z.N., Dai, Y.C.: Chemical Process Data Treatment and Experiment Design, pp. 190–191. Hydrocarbon Processing Press, Beijing (1989)

    Google Scholar 

  17. Pray, H.A., Schweienert, C.E., Minnich, B.H.: Solubility of Hydrogenoxygen Nitrogen and Helium in Water at Elevated Temperature. Ind. Eng. Chem. 44, 1146–1151 (1952)

    Article  Google Scholar 

  18. Li, R.K., Savage, P.E., Szmukler, D.: 2-Chlorophenol Oxidation in Suercritical Water: Gloabal Kinetics and Reaction Products. Journal of AIChE 39(1), 178–187 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Y., Zhong, X. (2008). Hierarchical Differential Evolution for Parameter Estimation in Chemical Kinetics. In: Ho, TB., Zhou, ZH. (eds) PRICAI 2008: Trends in Artificial Intelligence. PRICAI 2008. Lecture Notes in Computer Science(), vol 5351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89197-0_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89197-0_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89196-3

  • Online ISBN: 978-3-540-89197-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics