Skip to main content
Log in

A Novel Algebraic Structure of the Genetic Code Over the Galois Field of Four DNA Bases

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

A novel algebraic structure of the genetic code is proposed. Here, the principal partitions of the genetic code table were obtained as equivalent classes of quotient spaces of the genetic code vector space over the Galois field of the four DNA bases. The new algebraic structure shows strong connections among algebraic relationships, codon assignment and physicochemical properties of amino acids. Moreover, a distance function defined between the codon binary representations in the vector space was demonstrated to have a linear behavior respect to physical variables such as the mean of amino acids interaction energies in proteins. It was also noticed that the distance between wild type and mutant codons approach to smaller values in mutational variants of four genes, i.e., human phenylalanine hydroxylase, human β-globin, HIV-1 protease and HIV-1 reverse transcriptase. These results strongly suggest that deterministic rules must be involved in the genetic code origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alf-Steinberger, C. (1969). The genetic code and error transmission. Proc. Natl. Acad. Sci. USA, 64: 584–591.

    Article  Google Scholar 

  • Bashford, J. D. and P. D. Jarvis (2000). The genetic code as a periodic table. Biosystems 57: 147–161.

    Article  Google Scholar 

  • Bashford, J. D., I. Tsohantjis and P. D. Jarvis (1998). A supersymmetric model for the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 95: 987–992.

    Article  Google Scholar 

  • Beland, P. and T. F. Allen (1994). The origin and evolution of the genetic code. J. Theor. Biol. 170: 359–365.

    Article  Google Scholar 

  • Birkhoff, G. and S. MacLane (1941). A Survey of Modern Algebra. The Macmillan Company. New York.

    Google Scholar 

  • Chothia, C. H. (1974). Hydrophobic bonding and accessible surface area in proteins. Nature 248: 338–339.

    Article  Google Scholar 

  • Chothia, C. H. (1975). Structural invariants in protein folding. Nature 354: 304–308.

    Article  Google Scholar 

  • Crick, F. H. C. (1968). The origin of the genetic code. J. Mol. Biol. 38: 367–379.

    Article  Google Scholar 

  • Eck, R. V. (1963). Genetic code—Emergence of a symmetrical pattern. Science 140: 477–481.

    Google Scholar 

  • Epstein, C. J. (1966). Role of the amino-acid “code” and of selection for conformation in the evolution of proteins. Nature 210: 25–28.

    Google Scholar 

  • Fauchere, J. L. and V. Pliska (1983). Hydrophobic parameters pi of amino acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur. J. Med. Chem. 18: 369–375.

    Google Scholar 

  • Friedman, S. M. and I. B. Weinstein (1964). Lack of fidelity in the translation of ribopolynucleotides. Proc. Natl. Acad. Sci. USA 52, 988–996.

    Article  Google Scholar 

  • Gillis, D., S. Massar, N. J. Cerf and M. Rooman (2001). Optimality of the Genetic Code with Respect to Protein Stability and Amino Acid Frequencies. Genome Biology 2, research0049.1-research0049.12.

  • Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science 185: 862–864.

    Google Scholar 

  • Hornos J. E. and Y. M. Hornos (1993). Algebraic model for the evolution of the genetic code. Phys. Rev. Lett. 71: 4401–4404.

    Article  Google Scholar 

  • Jiménez-Montaño, M. A. (1996). The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. Biosystems 39: 117–125.

    Article  Google Scholar 

  • Jukes, T. H. (1977). The amino acid code. In A. Neuberger, Comprehensive Biochemistry. Amsterdam: Elsevier, pp. 235–293.

    Google Scholar 

  • Kostrikin, A. I. (1980). Introducciön Al Álgebra. Éditorial MIR, Moscú.

    Google Scholar 

  • Lehmann, J. (2000). Physico-chemical constraints connected with the coding properties of the genetic system. J. Theor. Biol. 202: 129–144.

    Article  Google Scholar 

  • Lewin, B. (2004). Genes VIII. Oxford University Press.

  • Miyazawa, S. and R. L. Jernigan (1985). Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18: 534–552.

    Article  Google Scholar 

  • Miyazawa, S. and R. L. Jernigan (1996). Residue—residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256: 623–644.

    Article  Google Scholar 

  • Parker, J. (1989). Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53: 273–298

    Google Scholar 

  • Pontriaguin, L. S. (1978). Grupos Continuos. Capítulo 10. Editorial Mir. Moscow, pp. 338–451.

    Google Scholar 

  • Redéi, L. (1967). Algebra, Vol. 1. Akadémiai Kiadö, Budapest.

    Google Scholar 

  • Robin, D., R. D. Knight, S. J. Freeland, and L. F. Landweber (1999). Selection, history and chemistry: the three faces of the genetic code. Trends. Biochem. Sci. 24: 241–247

    Article  Google Scholar 

  • Rose, G. D., A. R. Geselowitz, G. J. Lesser, R. H. Lee, and M. H. Zehfus (1985). Hydrophobicity of amino acid residues in globular proteins. Sciences 229: 834–838.

    Google Scholar 

  • Sánchez, R., R. Grau and E. Morgado (2004a). The genetic code boolean lattice. MATCH Commun. Math. Comput. Chem 52: 29–46.

    Google Scholar 

  • Sánchez, R., R. Grau and E. Morgado (2004b). Genetic code boolean algebras, WSEAS transactions on Biology and Biomedicine 1: 190–197.

    Google Scholar 

  • Sánchez R., E. Morgado, and R. Grau (2005a). A genetic code boolean structure I. The meaning of boolean deductions. Bull. Math. Biol. 67: 1–14.

    Article  Google Scholar 

  • Sánchez, R., L. A. Perfetti, R. Grau and E. Morgado (2005b). A New DNA Sequences Vector Space on a Genetic Code Galois Field.

  • Sánchez R., E. Morgado, and R. Grau (2005c). Gene algebra from a genetic code algebraic structure. J. Math. Biol. 51: 431–457.

    Article  Google Scholar 

  • Siemion, I. Z., P. J. Siemion and K. Krajewski Chou-Fasman conformational amino acid parameters and the genetic code. Biosystems. 36: 231–238.

  • Volkenshtein, M. V. (1985). Biofísica. Editorial MIR, Moscú, Capítulo 17: 621–639.

    Google Scholar 

  • Woese, C. R. (1965). On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 54: 1546–1552

    Article  Google Scholar 

  • Woese, C. R. (1965). Order in the genetic code. Proc. Natl Acad. Sci. USA 54: 71–75.

    Article  Google Scholar 

  • Yang, Z. (2000). Adaptive Molecular Evolution. In M. Balding, M. Bishop & C. Cannings Eds.), Handbook of Statistical Genetics, Wiley:London, pp. 327–350.

    Google Scholar 

  • Zamyatin, A. A. (1972). Protein volume in solution. Prog. Biophys. Mol. Biol. 24: 107–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robersy Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, R., Grau, R. A Novel Algebraic Structure of the Genetic Code Over the Galois Field of Four DNA Bases. Acta Biotheor 54, 27–42 (2006). https://doi.org/10.1007/s10441-006-6192-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-006-6192-9

Key words

Navigation