Skip to main content
Log in

Emergentism by default: A view from the bench

  • Original Paper
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

For the last 50 years the dominant stance in experimental biology has been reductionism in general, and genetic reductionism in particular. Philosophers were the first to realize that the belief that the Mendelian genes were reduced to DNA molecules was questionable. Soon, experimental data confirmed these misgivings. The optimism of molecular biologists, fueled by early success in tackling relatively simple problems has now been tempered by the difficulties encountered when applying the same simple ideas to complex problems. We analyze three examples taken from experimental data that illustrate the shortcomings of this sort of reductionism. In the first, alterations in the expression of a large number of genes coexist with normal phenotypes at supra-cellular levels of organization; in the second, the supposed intrinsic specificity of hormonal signals is negated; in the third, the notion that cancer is a cellular problem caused by mutated genes is challenged by data gathered both from the reductionist viewpoint and the alternative view proposing that carcinogenesis is development gone awry. As an alternative to reductionism, we propose that the organicist view is a good starting point from which to explore these phenomena. However, new theoretical concepts are needed to grapple with the apparent circular causality of complex biological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akagi T., Sasai K., Hanafusa H. (2003). Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proceedings of the National Academy of Science of the United States of America, 100, 13567–13572

    Article  Google Scholar 

  • Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2001). Molecular biology of the cell (pp. 1313–1362). New York, NY: Garland Publishing Inc.

  • Alberts B., Johnson A., Lewis J.G., Raff M., Roberts K., Walter P. (2002). Molecular biology of the cell (pp. 1015). New York, NY: Garland Publishing Inc.

  • Bassett D.E., Jr., Eisen M.B., Boguski M.S. (1999). Gene expression informatics—It’s all in your mine. Nature Genetics, 21, 51–55

    Article  Google Scholar 

  • Benson K. (2001). T.H. Morgan’s resistance to the chromosome theory’. Nature Reviews: Genetics, 2, 469–474

    Article  Google Scholar 

  • Bissell M.J. (1981). The differentiated state of normal and malignant cells or how to define a normal cell in culture. International Review of Cytology, 70, 27–100

    Article  Google Scholar 

  • Bissell M.J., Radisky D. (2001). Putting tumours in context. Nature Reviews: Cancer, 1, 46–54

    Article  Google Scholar 

  • Brisken C., Socolovsky M., Lodish H.F., Weinberg R. (2002). The signaling domain of the receptor rescues prolactin receptor-mutant mammary epithelium. Proceedings of the National Academy of Science of the United States of America, 99, 14241–14245

    Article  Google Scholar 

  • Brown P.O., Botstein D. (1999). Exploring the new world of the genome with DNA microarrays. Nature Genetics, 21, 33–37

    Article  Google Scholar 

  • Bunge M. (2004). Emergence and convergence (pp. 13–14). Tortonto: University of Toronto Press.

  • Clark W.H. (1991). Tumour progression and the nature of cancer. British Journal of Cancer, 64, 631–644

    Google Scholar 

  • Cunha G.R., Bigsby R.M., Cooke P.S., Sugimura Y. (1985). Stromal-epithelial interactions in adult organs. Cell Differentiation, 17, 137–148

    Article  Google Scholar 

  • Curtis H.J. (1965). Formal discussion of: Somatic mutations and carcinogenesis. Cancer Research, 25, 1305–1308

    Google Scholar 

  • Dawe C.J., Morgan W.D., Slatick M.S. (1966). Influence of epithelio-mesenchymal interactions of tumor induction by polyoma virus. International Journal of Cancer, 1, 419–450

    Article  Google Scholar 

  • Dawkins R. (1976). The selfish gene. Oxford, Oxford University Press

    Google Scholar 

  • De Robertis E.A., Morita E.M., Cho K.W. Y. (1991). Gradient fields and homeobox genes. Development, 112, 669–678

    Google Scholar 

  • DiBerardino M.A., Orr N.H., McKinnell R.G. (1986). Feeding tadpoles cloned from Rana nuclei. Proceedings of the National Academy of Science of the United States of America, 83, 8231–8234

    Article  Google Scholar 

  • Downie S.A., Newmann S.A. (1994). Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation. Developmental Biology, 162, 195–208

    Article  Google Scholar 

  • Elenbaas B., Spirio L., Koerner F., Fleming M.D., Zimonjic D.B., Donaher J.L., Popescu N.C., Hahn W.C., Weinberg R.A. (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes and Development, 15, 50–65

    Article  Google Scholar 

  • Farge E. (2003). Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Current Biology, 13, 1365–1377

    Article  Google Scholar 

  • Foulds L. (1969). Neoplastic development. New York, NY, Academic Press

    Google Scholar 

  • Fujii H., Cunha G.R., Norman J.T. (1982). The prostatic inducer. Journal of Urology, 128, 858–861

    Google Scholar 

  • Gilbert S.F. (1997). Developmental biology (pp. 594–596). Sunderland: Sinauer Associates. Inc.

  • Gilbert S.F. (2003). Developmental biology (pp. 143). Sunderland: Sinauer Associates Inc.

  • Gilbert S.F. (2003b). The “Re-discovery”, of Morphogenic fields, http://www.devbio.com/ article.php?id=18&search=morphogenetic%20field

  • Gilbert S.F., Sarkar S. (2000). Embracing complexity: Organicism for the 21st century. Developmental Dynamics, 219, 1–9

    Article  Google Scholar 

  • Gould M.N. (1995). Rodent models for the study of etiology, prevention and treatment of breast cancer. Seminars in Cancer Biology, 6, 147–152

    Article  Google Scholar 

  • Greenspan R.J. (2001). The flexible genome. Nature Reviews: Genetics, 2, 383–387

    Article  Google Scholar 

  • Griffiths P.E. Gray R.D. (2000). Darwinism and developmental systems. In S. Oyama P.E. Griffiths, R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution MIT Press.

  • Gullino P.M., Pettigrew H.M., Grantham F.H. (1975). N-nitrosomethylurea as mammary gland carcinogen in rats. Journal of the National Cancer Institute, 54, 401–414

    Google Scholar 

  • Gurdon J.B. (1968). Transplanted nuclei and cell differentiation. Scientific American, 219, 24–35

    Article  Google Scholar 

  • Guzman R.C., Osborn R.C., Swanson S.M., Sakthivel R., Hwang S.-I., Miyamoto S., Nandi S. (1992). Incidence of c-Ki-ras activation in N-methyl-N-nitrosourea-induced mammary carcinomas in pituitary-isografted mice. Cancer Research, 52, 5732–5737

    Google Scholar 

  • Hahn W.C., Weinberg R.A. (2002a). Mechanisms of disease: Rules for making human tumor cells. New England Journal of Medicine, 347, 1593–1603

    Article  Google Scholar 

  • Hahn W.C., Weinberg R.A. (2002b), Modelling the molecular circuitry of cancer. Nature Reviews: Cancer, 2, 331–342

    Article  Google Scholar 

  • Hull D. (1974). The philosophy of biological science. Englewood Clifts, NJ Prentice Hall pp. 8–44

    Google Scholar 

  • Humpherys D., Eggan K., Akutsu H., Friedman A., Hochedlinger K., Yanagimachi R., Lander E. S., Golub T.R., Jaenisch R. (2002). Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proceedings of the National Academy of Science of the United States of America, 99, 12889–12894

    Article  Google Scholar 

  • Illmensee K., Mintz B. (1976). Totipotency and normal differentiation of single teratocarcinoma cell cloned by injection into blastocysts. Proceedings of the National Academy of Science of the United States of America, 73, 549–553

    Article  Google Scholar 

  • Jacob F. (1982). The possible and the actual. Seattle, WA, University of Washington Press.

    Google Scholar 

  • Kim J. (1999). Making sense of emergence. Philosophical Studies, 95, 3–36

    Article  Google Scholar 

  • Kupiec J.J. (1997). A Darwinian theory for the origin of cellular differentiation. Molecular and General Genetics, 255, 201–208

    Article  Google Scholar 

  • Mayr E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Cambridge MA, Belknap Press, pp 1–146

    Google Scholar 

  • McCullough K., Coleman W., Ricketts S., Wilson J., Smith G., Grisham J.W. (1998). Plasticity of the neoplastic phenotype in vivo is regulated by epigenetic factors. Proceedings of the National Academy of Science of the United States of America, 95, 15333–15338

    Article  Google Scholar 

  • McKinnell R.G., Lust J.M., Sauerbier W., Rollins-Smith L.A., Williams J.W. 3., Williams C.S., Carlson D.L. (1993). Genomic plasticity of the Lucke renal carcinoma: a review. International Journal of Developmental Biology, 37, 213–219

    Google Scholar 

  • Morange M. (2003). History of cancer research. Encyclopedia of life sciences. London, Nature Publishing Group

    Book  Google Scholar 

  • Moss L. (2003). What genes can’t do. Cambridge MA, MIT Press

    Google Scholar 

  • Needham J. (1931) Chemical embryology. Cambridge, Cambridge University Press

    Google Scholar 

  • Needham J. (1936). New advances in chemistry and biology of organized growth. Proceedings of the Royal Society of Britian, 29, 1577–1626

    Google Scholar 

  • Orr J.W. (1955). The early effects of 9:10-dimethyl-1:2-benzanthracene on mouse skin, and their in relation to the mechanism of chemical carcinogenesis. British Journal of Cancer, 9, 623–632

    Google Scholar 

  • Orr J.W. (1958). The mechanism of chemical carcinogenesis. British Medical Bulletin, 14, 99–101

    Google Scholar 

  • Orr J.W., Spencer A.T. (1972) Transplantation studies of the role of the stroma in epidermal carcinogenesis. In: Tarin D. (eds), Tissue interactions in carcinogenesis. London, Academic Press, pp. 291–304

    Google Scholar 

  • Pierce G.B., Shikes R., Fink L.M. (1978). Cancer: A problem of developmental biology. Cliffs NJ, Prentice-Hall

    Google Scholar 

  • Rao M.S., Reddy J.K. (1996) Cell and tissue adaptations to injury. In: Sirica A.E.(eds), Cellular and molecular pathogenesis hiladelphia, PA Lippincott-Raven, pp. 57–78

  • Rideout W.M., Eggan K., Jaenisch R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science, 293, 1093–1098

    Article  Google Scholar 

  • Rosenberg A. (1994). Instrumental biology, or, the disunity of science. Chicago, University of Chicago Press

    Google Scholar 

  • Socolovsky M., Fallon A.E. J., Lodish H.F. (1998). The prolactin receptor rescues EpoR-/- progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood, 92, 1491–1496

    Google Scholar 

  • Sonnenschein C., Soto A.M. (1999). The society of cells: Cancer and control of cell proliferation. New York, Springer Verlag

    Google Scholar 

  • Sonnenschein C., Soto A.M. (2000). The somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Molecular Carcinogenesis. 29, 1–7

    Article  Google Scholar 

  • Soto A.M., Sonnenschein C. (2004). The somatic mutation theory of cancer: growing problems with the paradigm?. BioEssays, 26, 1097–1107

    Article  Google Scholar 

  • Steinmuller D. (1971). A reinvestigation of epidermal transplantation during chemical carcinogenesis. Cancer Research, 31, 2080–2084

    Google Scholar 

  • Stewart T.A., Mintz B. (1981). Successful generations of mice produced from an established culture line of euploid teratocarcinoma cells. Proceedings of the National Academy of Science of the United States of America, 78, 6314–6318

    Article  Google Scholar 

  • Swann P.F. (1968). The rate of breakdown of methyl methanesulphonate, dimethyl sulphate and N-methyl-N-nitrosorurea in the rat. Biochemical Journal, 110, 49–52

    Google Scholar 

  • Tarin D. (1972). Tissue interaction in carcinogenesis. London, Academic Press

    Google Scholar 

  • van Obberghen-Schilling E., Roche N.S., Flanders K.C., Sporn M.B., Roberts A. (1988). Transforming growth factor beta-1 positively regulates its own expression in normal and transformed cells. Journal of Biological Chemistry, 263, 7741–7746

    Google Scholar 

  • Waddington C.H. (1935). Cancer and the theory of organizers. Nature, 135, 606–608

    Article  Google Scholar 

  • Weaver V.M., Fischer A.H., Petersen O.W., Bissell M.J. (1996). The importance of the microenvironment in breast cancer progression:recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochemistry and Cell Biology, 74, 833–851

    Article  Google Scholar 

  • Weaver V.M., Lelievre S., Lakins J.N., Chrenek M.A., Jones J.C., Giancotti F., Werb Z., Bissell M.J.(2002). Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell. 2, 205–216

    Article  Google Scholar 

  • Weaver V.M., Petersen O.W., Wang F., Larabell C.A., Briand P., Damsky C., Bissell M.J. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo integrin blocking antibody. Journal of Cell Biology, 137, 231–245

    Article  Google Scholar 

  • Weinberg R.A. (1998). One renegade cell: How cancer begins. New York, Basic Books

    Google Scholar 

  • Weinstein I.B. (2002). Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science, 297, 63–64

    Google Scholar 

  • Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto, A.M., Sonnenschein, C. Emergentism by default: A view from the bench. Synthese 151, 361–376 (2006). https://doi.org/10.1007/s11229-006-9030-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-006-9030-3

Keywords

Navigation