Skip to main content
Log in

Why Numbers Are Sets

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

I follow standard mathematical practice and theory to argue that the natural numbers are the finite von Neumann ordinals. I present the reasons standardly given for identifying the natural numbers with the finite von Neumann's (e.g., recursiveness; well-ordering principles; continuity at transfinite limits; minimality; and identification of n with the set of all numbers less than n). I give a detailed mathematical demonstration that 0 is { } and for every natural number n, n is the set of all natural numbers less than n. Natural numbers are sets. They are the finite von Neumann ordinals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Balaguer, M.: 1998, ‘Non-Uniqueness as a Non-Problem’, Philosophia Mathematica (3) 6, 63–84.

    Google Scholar 

  • Benacerraf, P.: 1965, ‘What Numbers Could Not Be’, in P. Benacerraf and H. Putnam (eds) (1984) Philosophy of Mathematics, Cambridge University Press, New York, pp. 272-295.

    Google Scholar 

  • Benacerraf, P.: 1996, ‘What Mathematical Truth Could Not Be — I’, in A. Morton and S. Stich (eds), Benacerraf and his Critics, Blackwell, Cambridge, MA, pp. 9–59.

    Google Scholar 

  • Boolos, G. and R. Jeffrey: 1974, Computability and Logic, Cambridge University Press, New York.

    Google Scholar 

  • Church, A.: 1941, The Calculi of Lambda-Conversion, Annals of Mathematics Studies (6), Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Ciesielski, K.: 1997, Set Theory for the Working Mathematician, Cambridge University Press, New York.

    Google Scholar 

  • Devlin, K: 1991, The Joy of Sets: Fundamentals of Contemporary Set Theory, Springer-Verlag, New York.

    Google Scholar 

  • Drake, F.: 1974, Set Theory: An Introduction to Large Cardinals, American Elsevier, New York.

    Google Scholar 

  • Eisenberg, M.: 1971, Axiomatic Theory of Sets and Classes, Holt, Rinehart, and Winston Inc., New York.

    Google Scholar 

  • Enderton, H.: 1972, A Mathematical Introduction to Logic, Academic Press, New York.

    Google Scholar 

  • Enderton, H.: 1977, Elements of Set Theory, Academic Press, New York.

    Google Scholar 

  • Halmos, P.: 1960, Naive Set Theory, Van Nostrand, New York.

    Google Scholar 

  • Hamilton, A.: 1982, Numbers, Sets, and Axioms: The Apparatus of Mathematics,Cambridge University Press, New York.

    Google Scholar 

  • Hrbacek, K. and T. Jech: 1978, Introduction to Set Theory, Marcel Dekker Inc., New York.

    Google Scholar 

  • Just, W. and M. Weese: 1996, Discovering Modern Set Theory I: The Basics, American Mathematical Society, Providence, RI.

    Google Scholar 

  • Katz, J. J.: 1996, ‘Skepticism about Numbers and Indeterminacy Arguments’, in A. Morton and S. Stich (eds), Benacerraf and his Critics, Blackwell, Cambridge, MA, pp. 119–142.

    Google Scholar 

  • Kessler, G.: 1980, ‘Frege, Mill, and the Foundations of Arithmetic’, Journal of Philosophy 77(2), 65–79.

    Google Scholar 

  • Korner, S.: 1968, The Philosophy of Mathematics: An Introductory Essay, Dover Publications, New York.

    Google Scholar 

  • Krivine, J.-L.: 1971, Introduction to Axiomatic Set Theory, D. Reidel Publishing, Dordrecht.

    Google Scholar 

  • Maddy, P.: 1981, ‘Sets and Numbers’, Nous 15(4), 495–512.

    Google Scholar 

  • Maddy, P.: 1992, Realism in Mathematics, Oxford University Press, New York.

    Google Scholar 

  • Parsons, C.: 1994, ‘Intuition and Number’, in A. George (ed.), Mathematics and the Mind, Oxford University Press, New York, pp. 141–157.

    Google Scholar 

  • Pinter, C.: 1971, Set Theory, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Quine, W. V. O.: 1970, Set Theory and Its Logic, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Resnik, M.: 1997, Mathematics as a Science of Patterns, Oxford University Press, New York.

    Google Scholar 

  • Shapiro, S.: 1997, Philosophy of Mathematics: Structure and Ontology, Oxford University Press, New York.

    Google Scholar 

  • Suppes, P.: 1972, Axiomatic Set Theory, Dover, New York.

    Google Scholar 

  • Wetzel, L.: 1989, ‘That Numbers Could be Objects’, Philosophical Studies 56, 273–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinhart, E. Why Numbers Are Sets. Synthese 133, 343–361 (2002). https://doi.org/10.1023/A:1021266519848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021266519848

Keywords

Navigation