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Abstract:


The paper investigates the philosophical relationship between John von Neumann’s No-hidden-variable theorem and Bell’s inequalities. Bell erroneously takes the axiomatic method as implying a finality claim and thus ignores von Neumann’s strongly pragmatist stance. If one considers, however, Hilbert’s axiomatic method as a critical enterprise, Bell’s theorem improves von Neumann’s by defining a more appropriate notion of ‘hidden variable’ that permits one to include Bohm’s interpretation which recovers the predictive content of quantum mechanics. Contrary to Bell’s belief, accepting this model does not require adopting the metaphysically realist Bohm picture. If one takes the latter as a physical research programme one sees that it only partly disputes a common domain of facts with the mathematically oriented research programme of von Neumann.

















When I was a student I had much difficulty with quantum mechanics. It was comforting to find that even Einstein had had such difficulties for a long time. … Einstein did not seem to know that this possibility, of peaceful coexistence between quantum statistical predictions and a more complete theoretical description, had been disposed of with great rigour by John von Neumann.� I did not myself know von Neumann’s demonstration, for at that time it was only available in German. However I knew it from the beautiful book by Born, Natural Philosophy of Cause and Chance [of 1949]… But in 1952 I saw the impossible done. It was in the papers of David Bohm. … Moreover, the essential idea was one that had been advanced already by de Broglie in 1927, in his ‘pilot wave’ picture. 


	But why then had Born not told me of this ‘pilot wave’? If only to point out what was wrong with it? Why did von Neumann not consider it? More extraordinarily, why did people go on producing ‘impossibility’ proofs, after 1952, and as recently as 1978? When even Pauli, Rosenfeld, and Heisenberg, could produce no more devastating criticism than to brand it as ‘metaphysical’ and ‘ideological’? Why is the pilot wave picture ignored in text books? … To show that vagueness, subjectivity, and indeterminism, are not forced on us by experimental facts, but by deliberate theoretical choice? ([2], 159-160)





In 1965, John S. Bell himself proved a No-go Theorem for hidden-variable theories, such as the pilot wave theory. The famous Bell inequalities showed that although hidden variables could be made consistent with the empirical content of quantum mechanics, they necessarily violated relativistic causality or locality in such a way that their coexistence with special relativity was impossible. Other than von Neumann’s theorem, the Bell inequalities were open to empirical confirmation. Over the years various variants and generalisations were obtained and Bell himself did not weary to propagate precise experimental tests whether quantum mechanical predictions remained in the range ascribed to them by the equalities. At the time of Bell’s untimely death in 1990, that goal had finally been achieved to everyone’s satisfaction and together with his prestigious position as a member of the CERN Theory Division he had undoubtedly become the Olympian in the foundations of quantum mechanics; and to many he still is. 


	Bell did not hide his sympathies for one particular amendment of quantum mechanics fathered by Louis de Broglie and David Bohm. After 1987 also the GRW-spontaneous localisation model received his approval. He granted the value of working physicists’ attitude to apply the standard Copenhagen interpretation for all practical purposes (FAPP), but investigators in foundational matters had to observe an index verborum prohibitorum containing words like ‘observer’, ‘measurement’ etc., which typically occurred in FAPP talk. In all that story, John von Neumann was one of the bad guys because he had allegedly claimed that no extension of quantum theory was possible. And indeed von Neumann wrote back in 1932 as a conclusion of his No-hidden variable theorem:





It is therefore not, as is often assumed, a question of reinterpretation of quantum mechanics – the present system of quantum mechanics would have to be objectively false in order that another description of the elementary processes that the statistical one be possible. ([Bell], 5)





Bell’s reading of von Neumann’s theorem and, more generally, his remarks on the limited import of No-hidden-variable theorems in general have been most influential. To my mind, however, they are quite mistaken in an important respect. To be sure, there is no question about the physics. Today there exist various interpretations or even extensions of quantum mechanics which violate one of the axioms which von Neumann’s theorem rests upon and which nevertheless reproduce the empirical predictions of quantum mechanics. This paper is about the philosophical conclusions to be drawn from this fact for scientific methodology and ontology.


	A mathematically-minded view on the relation between the theorems of von Neumann and Bell, to my mind, would emphasise the following aspects. (i) Bell’s theorem is a generalisation of von Neumann’s. It is a No-go theorem that obtains under weaker assumptions.� (ii) De Broglie and Bohm provided a model which showed that one of von Neumann’s axioms was too restrictive and that alternative models could reproduce the predictions of quantum mechanics. (iii) Axiomatization and No-go theorems neither presuppose nor purport explanatory ultimacy. After setting up an axiom system it is most natural to ask whether the axioms can be relaxed or modified without leading to contradictions. 


	It is a certain advantage of the view advocated here that it involves a minimum of prior philosophical commitments to realism, determinism, and causality. I shall also argue that it corresponds to von Neumann’s methodology of opportunistic axiomatics. Notice that accepting this view does not at all belittle physicists’ controversies about the physical assumptions connected with a given axiomatisation. It is just important to clearly distinguish them. In this sense, the following note from Wigner contains two separate positions of von Neumann.�





As an old friend of Von Neumann, and in order to preserve historical accuracy, the present writer may be permitted the observation that the proof contained in this book [1932] was not the one which was principally responsible for Von Neumann’s conviction of the inadequacy of hidden variable theories. Rather, Von Neumann often discussed the measurement of the spin component of a spin-½ particle in various directions. Clearly, the possibilities for the two possible outcomes of a single such measurement can be easily accounted for by hidden variables … However, Von Neumann felt that this is not the case for many consecutive measurements of the spin component in various different directions. … A great number of consecutive measurements will select particles the hidden variables of which are all so closely alike that the spin component has, with a high probability, a definite sign in all directions. However, according to quantum mechanical theory, no such state is possible. ([33], 1009)





Wigner’s note continues with an objection of Schrödinger to this argument and his assent to von Neumann’s unpublished rejoinder. In a letter to the editor, John F. Clauser [6] [7] shows that the latter argument is invalid. In a rejoinder, Wigner admits that 





incomplete as it was from a strictly logical point of view, [it] was the one which convinced von Neumann. Apparently, even mathematicians are convinced occasionally by considerations which they cannot formulate in a rigorous fashion – though they apparently do not publish them. ([34], 1097)





The physical details shall not concern us here. That von Neumann did feel the need for a physical argument against hidden variables strongly indicates that he did not consider the matter to be cast in stone once and for all by his theorem. Unfortunately, this message was not received by Bell who had apparently suggested Wigner to add� the observations on his deceased friend and who quoted his paper in subsequent works.� 


	Bell’s point of departure was starkly a different one, and his main misgivings about standard quantum mechanics resulted from a very pointed philosophical view about what fundamental physics be like, to wit, about ‘beables’ instead of ‘observables’. Beable-realism – as I call this position [30] – made Bell prefer the whole de Broglie-Bohm picture even after the violation of his own equalities was experimentally confirmed beyond any reasonable doubt. In his late years Bell was more and more willing to pay the high price for it marked out by his own theorem and to jettison relativistic causality. “I am unable to prove, or even formulate clearly, the proposition that a sharp [beable-based] formulation of quantum field theory, such as that set out here, must disrespect serious Lorentz invariance. But it seems to me that this is probably so.”([2], 180) And in his unpublished 1989 Erice talk “Is there anything that goes faster than light”, Bell spent quite a substantial amount of time on tachyons.


	The important point for the present paper is that in Bell’s hands the de Broglie-Bohm picture became a full-blown Lakatosian research programme [18] in the foundations of physics the hard core of which consisted in the beable concept, the quest for objectivity of the states in the same manner as in classical physics, and the primacy of position measurements. I doubt whether von Neumann’s above-mentioned physical arguments were embedded into such a well-entrenched research programme in foundational physics. He was too much of a pragmatist and his foundational aspirations were more driven by the intention to deepen the mathematical foundations of quantum theory – a goal that had already characterised Hilbert’s axiomatic method. Motivated by problems of the interpretation of quantum probabilities, shortly after 1932 von Neumann became dissatisfied with the Hilbert space framework and investigated what are today called type II von Neumann algebras [29]. Physically this was tantamount to consider�ing the quantum theory of systems with infinitely many particles as more funda�mental than simple quantum mechanics. Already in the Mathematical Founda�tions, he had made the first steps towards quantum logic which he regarded as conceptually sharper than the ordinary theory because “the concept of ‘simultaneous decidability’ represents a refinement of the concept of ‘simultaneous measurability’” ([22], 134;254). By the time of his untimely death, the reconciliation between logic and probability was, to his mind, still a – widely neglected – open problem although mathematically both were based on the concept of orthogonality. In his 1954 address to the Inter�na�tional Congress of Mathematicians, he surmised: 





[O]ne has a formal mechanism, in which logics and probability arise simultaneously and are derived simultaneously. I think that it is quite important …, if one succeeds in deriving this system from first principles, in other words from a suitable set of axioms. All the existing axio�matisations of this system are unsatisfactory in this sense, that they bring in quite arbitrarily algebraical laws which are not related to anything that one believes to be true or that one has observed in quantum theory to be true ([26], 245).





In this sense, I conclude that Bell’s and von Neumann’s research programmes partly did, but partly did not dispute a common ground of empirical or quasi-empirical facts. Granting validity to some of Bell’s arguments does not necessitate rejecting tout court von Neumann’s (very opportunistic) use of the axiomatic method and his concrete axiomatic results, as Bell believed. After briefly rehearsing von Neumann’s No-go theorem in Section 1, I shall analyse Bell’s position about von Neumann’s proof and No-go theorems in general. My main objective is to set apart Bell’s legitimate physical criticism and his illegitimate allegations of apriorism which root in a deep misunderstanding of the axiomatic method. Section 3 outlines von Neumann’s opportunistic axiomatics and its relation to Hilbert’s axiomatic method. Section 4 documents that this methodology was such as to permit von Neumann appreciating Bohm’s model – not the de Broglie-Bohm picture. In Lakatosian terms, Bohm’s theory was a local but not a global counterexample that revealed a certain poverty of the theorem for which one could also provide physical support.





1. Briefly Rehearsing von Neumann’s Argument





In 1955, von Neumann recalled three serious scientific crises that had oc�curred during his lifetime: “the conceptual soul-searching connected with the discovery of relativity and the conceptual difficulties connected with discoveries in quantum mechanics … [plus one in mathematics] dealing with rigor and the proper way to carry out a correct mathematical proof” ([25], 491). All three crises concerned definability. This is most noticeable in the third case where Tarski proved on the basis of Gödel’s Incompleteness Theorem that one cannot define a truth predicate within an axiom system that is sufficiently rich to comprise arithmetic. The Mathematical Foundations offer a comparison between the other two.





[In relativity theory] it is maintained that it is impossible in principle to determine the simultaneity of two events occurring at points a distance r apart, more precisely than within a time interval of magnitude r/c (c is the velocity of light); while the indeterminacy relations predict that it is impossible in principle to give the position of a material point in phase space more precisely than within a region of volume (h/4()3. Nevertheless there exists a fundamental difference. The relativity theory … [makes] possible, by the intro�duc�tion of a Galilean frame of reference, to put a coordinate system in the world which makes a simultaneity definition possible that is in reasonable agreement with our normal concepts on this subject. An objective meaning will not be attributed to such a definition of distant simultaneity only because such a coordinate system can be chosen in an infinite number of different ways … It is otherwise in quantum me�chanics, where it is in general not possible to describe a system with the wave function ( by points in phase space, not even if we introduce new (hypothetical, unobserved) coordinates, the ‘hidden parameters’, – since this would lead to dispersion-free ensembles [which contradict the axioms] ([22], 171f.; 325f.). 





Von Neumann’s No-hidden-variable argument commences with the attempt to define causality as an expression of the principle of sufficient reason in such a way that nature could never violate it. As does Bell, von Neumann takes causality as complete determination of the dynamics by the formalism. Causality fails if the following principle holds: 





All the systems S1,…,SN of the ensemble are in the same state but the laws are not causal. Dispersions are not due to our lack of knowledge about the state, but to nature itself which has disregarded the “principle of sufficient reason.” ([22], 160; 302)





One may object that accepting this principle represents no violation of the principle of sufficient reason because it is a mere definition of equality. This line of reasoning leads into postulating ‘hidden parameters’ which would permit a further division of dispersing ensembles. But given present quantum mechanics, there is no such method of partition by successive measurements because each measurement destroys the preceding one. This is the point partly surfacing in von Neumann’s unpublished objections sketched by Wigner. But it is even theoretically impossible to entertain the belief that each ensemble could in principle be decomposed into two parts from which the original ensemble can be restored by mixing. The “attempt to interpret causality as an equality definition led to a question of fact … : is it really pos�si�ble to represent each ensemble [S1,…,SN], in which there is a quantity ( with dispersion, by the superposition of two (or more) ensembles different from one another and from it?” ([22], 162; 305) And, this factual question is answered negatively in a purely mathematical manner by von Neumann’s No-hidden variable theorem. This conclusion rests upon two principles:





I.	If the quantity ( has the operator R, then the quantity f(() has the operator f(R).


II.	If the quantities (,S,… have the operators R,S,…, then the quantity (+S+… has the operator R+S+… (The simultaneous measurability of (,S,… is not assumed …) ([22], 167; 313f.)





Later debates on the interpretation of quantum theory revealed that condition II. is too restrictive because it excludes modifications of the theory which allow one to recover all predictions of ordinary quantum theory. That von Neumann had thus used a defective notion of ‘hidden variable’ would become the main criticism of Bell.





2. Bell on No-Go Theorems





In his 1966 “On the problem of hidden variable in quantum mechanics”, which was written still before he obtained his famous inequalities, Bell writes:





[T]hese demonstrations [among them von Neumann’s] require from the hypothetical dispersion free states not only that appropriate ensembles thereof should have all measurable properties of quantum mechanical states, but certain other properties as well. These additional demands appear reasonable when results of measurement are loosely identified with properties of isolated systems. They are seen to be quite unreasonable when one remembers with Bohr ‘the impossibility of any sharp distinction between the behaviour of atomic objects and the interaction with the measuring instruments which serve to define the conditions under which the phenomena appear.’([2], 1-2)





To repeat, the main target of the present paper is not to study who wins the physical encounter. Rather do I intend to argue that Bell continues his legitimate argument about what is physically reasonable in a philosophically illegitimate way into a charge of apriorism.





The [additivity of expectation values in von Neumann’s axiom II.] is a quite peculiar property of quantum mechanical states, not to be expected a priori. There is no reason to demand it individually of the dispersion free states whose function is it to reproduce the measurable peculiarities of quantum mechanics when averaged over. … … Thus the formal proof of von Neumann does not justify his informal conclusion [that quantum mechanics would have to be objectively false if hidden variables existed]. … It was not the objective measurable predictions of quantum mechanics which ruled out hidden variables. It was the arbitrary assumption of a particular (and impossible) relation between the results of incompatible measurements either of which might be made on a given occasion but only one of them in fact can be made. ([2], p. 4-5)





Similar allegations are made against an axiom of Jauch and Pirron [16] which was more general than von Neumann’s II. “We are not dealing in [this axiom] (B) with logical propositions, but with measurements involving, for example, differently oriented magnets. The axiom holds for quantum mechanical states. But it is a quite peculiar property of them, in no way a necessity of thought.” ([2], 6) And in 1971 the contrast between ‘axioms’ and ‘physics’ has become even starker.





That the statistical average should then turn out to be additive is really a quite remarkable feature of quantum- mechanical states, which could not be guessed a priori. It is by no means a ‘law of thought’ and there is no a priori reason to exclude the possibility for states for which it is false. ([2], 32)





As we shall see that von Neumann at least partly subscribed to empiricism – which Bell and other beable-realists typically denigrate as ‘positivism’ –, these charges are most surprising. Typically the charges of a false ‘necessity of thought’ or a ‘law of thought’ that is not subject to empirical testing, had been levelled against Kantianism or neo-Kantianism in the debates on the a priori character of space and time and causality. The writings of Mach, Boltzmann and the Vienna Circle are full of very explicit statements condemning the elevation of principles which have proven successful in our lifeworld or in classical physics to the an immutable a priori status. Von Neumann joins in with this tradition. 





[Concerning causality] we are dealing with an age old way of thinking of all mankind, but not with a necessity of thought…, and anyone who enters upon the subject without preconceived opinions has no reason to adhere to it. Under such circumstances, are there any motives to sacrifice a reasonable physical theory for its sake? ([22], 172f.; 328)





In a certain sense the charge of apriorism might be reverted against Bell’s ‘beable’-realism. Why should position been given a primary role in our physical world just because our present laboratory apparatus have pointers or computer printouts?


	Bell’s view on the axiomatic method are far from clear. While in the above passages he has charged von Neumann of assuming – presumably by intuition or transcendental analysis – certain axioms are a priori necessities of thought, in a paper from 1981 he is talking Tractatus Wittgenstein when hailing a passage from Bertrand Russell.





The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite surprising to have it appearing in physical theory at the most fundamental level. Less surprising is perhaps that mathematicians, who need only simple axioms about otherwise undefined objects, have been able to write extensive works on quantum measurement theory – which experimental physicists do not find it necessary to read. Mathematics has been well called ‘the subject in which we never know what we are talking about’. ([2], 117)�





Considering mathematics as an empty formal game was a position entertained by some Logical Empiricists, e.g. Hans Hahn, in order to reconcile a firm empiricism with the logicist foundations of mathematics.[32] According to This view was primarily directed against basing axioms on intuitions or geometrical or arithmetical necessities of thought. David Hilbert’s 1899 Foundations of Geometry [13] was an important milestone in overcoming the Euclidean view on axiomatics, but Hilbert did not consider mathematics as an empty formal game, but as a most important contribution to scientific knowledge. This shall become clearer in Section 3.


	In 1975, Bell published a paper “On wave packet reduction in the Coleman-Hepp model.” Hepp’s model was formulated in terms of the C*-algebraic approach created by von Neumann and developed in detail after 1960 by Rudolf Haag and many others. Studying a simplified version, Bell argues that this model does not provide a solution of the measurement problem. “It will be insisted that the ‘rigorous reduction’ [of the wave packet] does not occur in physical time but only in an unattainable mathematical limit. It will be argued that this distinction is an important one.” ([2], 45) As a matter of fact, most people working in the C*-algebraic framework would indeed claim that one major lesson of this approach consists in the fact that quantum mechanics appears as an especially nice finite-dimensional case within a general framework that naturally embeds infinite-dimensional spin systems or quantum field theory. For an infinitely extended spin lattice, each representation corresponds to a different macroscopic magnetic field. Similarly, Hepp shows how a macroscopically definite pointer position emerges in the thermodynamic limit. Seen from this perspective, Bell’s rejection of Hepp’s limiting procedure seems to demand something hardly attainable for fundamental physics, namely, to be approximation-free. More concretely, Bell constructs a highly non-standard observable and concludes.





So long as nothing, in principle, forbids consideration of such arbitrary complicated observable, it is not permitted to speak of wave packet reduction. While for a given observable one can find a time for which the unwanted interference is as small as you like, for any given time one can find an observable for which it is as big as you do not like.([2], 48-49)





Certainly, Bell’s observable is ‘physically unreasonable’. But the axiomatic approach has to face counterexamples like this; unintended models may exhibit a shortcoming of the axioms unless they can be excluded by a mathematically precise secondary condition of what counts as physically reasonable. The intention of von Neumann’s No-hidden-variable theorem was nothing else than to supply such a condition. 


	It happens only in rare cases that all models of an axiom system are isomorphic, so that the axioms and every single model have the same physical content and no subsidiary condition is needed. Even the axioms of ordinary arithmetic admit a non-standard model entirely different from the natural numbers, the so-called Skolem functions. Von Neumann, however, succeeded in proving that quantum mechanics has the particularly nice feature – which logicians call categoricity – that all representations of the canonical commutation relations are unique up to isomorphism. But categoricity fails for quantum statistical mechanics and quantum field theory. 


	Typically, Bohm’s theory is considered as a counterexample to von Neumann’s theorem. But one has to be more precise here and observe a distinction stressed by Imre Lakatos [17]. Refutations of a theorem are suggested by counterexamples that either concern the conjecture (global counterexamples), or the lemmas or simple axioms (local counterexamples). Hence, there are three possible types. (i) Global, but not local counterexamples logically refute the conjecture. They are what most mathematicians would call a counterexample. (ii) If a global counterexample is also local, it does not refute the theorem, but confirms it. (iii) Local, but not global counterexamples show a poverty of the theorem, such that one has to modify the lemmas. Cases (ii) and (iii) are not genuinely logical, but heuristic counterexamples. Obviously Bohm’s theory provides a local but not a global counterexample and II. is the “guilty lemma” which needs to be appropriately generalised. Heuristic counterexamples of the third kind are most likely to be combined with a purely physical refutation. Whether a counterexample is local or global concerns the relation between the formal content of a theorem and the quasi-empirical stuff the theorem wants to encompass.


	The goal of any axiomatization is to consistently encompass the whole conceptual framework provided by a given domain of phenomena. In Hilbert and von Neumann’s days, this goal was called completeness.� In this form, the often-heard claim “that quantum mechanics is, at the best, incomplete” ([2], 26) acquires a reasonably precise meaning. But the inclusion of further structure, such as hidden variables, has to be performed in such a way that internal and external consistency – to take Hilbert’s wording – are preserved. As regards the former, von Neumann’s No-go theorem shows that a certain, admittedly defective, type of hidden variables cannot be introduced into the axiom system of quantum mechanics without producing a contradiction. As regards the latter, Bell’s theorem shows showed that a more general type of hidden variables is inconsistent with relativistic causality.


	In his 1982 “On the impossible pilot wave”, Bell revisits the issue of hidden variables. The word ‘counterexample’ has become metaphorical.





But like it or lump it, it [the de Broglie-Bohm picture] is perfectly conclusive as a counter example to the idea that vagueness, subjectivity, or indeterminism, are forced on us by the experimental facts covered by nonrelativistic quantum mechanics. What is then wrong with the impossibility proofs? Here I will consider only three of them, the most famous (incontestably), the most instructive (in my opinion), and the most recently published (to my knowledge). ([2], 163)





As regards the first proof, von Neumann’s, Bell essentially repeats his former argument. “More instructive is the Gleason-Jauch proof. … Jauch saw that Gleason’s theorem implied a result like that of von Neumann but with a weaker additivity assumption.” ([2], 164) Still, their axiom about incompatible observables is, on Bell’s account, physically implausible. “In denying the Gleason-Jauch independence hypothesis, the de Broglie-Bohm picture illustrates rather the importance of the experimental set-up as a whole, as insisted on by Bohr. The Gleason-Jauch axiom is a denial of Bohr’s insight.” ([2], 165) This judgement is far more thoughtful than the above allegations of apriorism. At bottom one could even say the axiomatic method has led to a sharp formulation what it means to deny ‘Bohr’s insight’ rendering thus the relationship between the de Broglie-Bohm theory and standard quantum mechanics more explicit. 


	The third proof discarded by Bell was due to Res Jost. Although Jost was an important contributor to axiomatic quantum field theory – in the Wightman setting – the disagreement is entirely about physics rather than about the quality of certain axioms. By placing Jost’s argument on a par with the theorems of von Neumann and Jauch-Pirron, Bell conflates the physical discussion about hidden variables with the analysis of axiom systems. To be sure, physical disagreement whether certain axioms are reasonable and deliberations as to how to formalise a notion like hidden are very important, but they must be clearly separated from formal questions about consistency, independence of the axiom system. On pain of inconsistency, modifications of single axioms always involve the whole system and the goal of Hilbert’s axiomatic method was to make this fact transparent.


	After some general morals already familiar to the reader, Bell concludes with a very interesting observation about the possibility of future No-Go theorems in which he essentially alludes to his own. The final sentence of the paper dedicated to de Broglie is, accordingly, not without understatement.





Of the various impossibility proofs, only those concerned with local causality seem now to retain some significance outside special formalisms. The de Broglie-Bohm theory is not a counter example in this case. … long may Louis de Broglie continue to inspire those who suspect that what is proved by impossibility proofs is lack of imagination. ([2], 167)





There also exists a very realistic self-description of Bell’s achievements. In the initially very pedestrian “Bertlmann’s socks and the nature of reality” (1981), Bell comes to his theorem.





Now the aim will be generality. … Note well … that the following argument makes no mention whatever of determinism. … Finally you might suspect that the very notion of particle, and particle orbit, freely used above in introducing the problem, has somehow led us astray. Indeed did not Einstein think that fields rather than particles are at the bottom of everything? So the following argument will not mention particles, nor indeed fields, nor any particular picture of what goes on at the microscopic level. Nor will it involve any use of the words ‘quantum mechanical system’, which can have an unfortunate effect on the discussion. The difficulty is not created by any such picture or any such terminology. It is created by the predictions about the correlations in the visible outputs of certain conceivable experimental set-ups. ([2], 150)





To my mind, Bell here nicely illustrates some core merits of his own No-go theorem. So why generality is bad for von Neumann’s if good for Bell’s theorem? In order to better get hands on their relationship, let me first give a brief survey of von Neumann’s methodology.





3. Von Neumann’s Methodology of Opportunistic Axiomatics





Von Neumann’s introduction to the trail-blazing Theory of Games and Economic Behavior, written together with Oskar Morgenstern and published in 1944, contains a very general objection against finality claims. “It happens occasionally that a particular physical theory appears to provide the basis for a universal system, but in all such instances up to the present time this appearance has not lasted more than a decade at best.” ([27], 2). Already in his 1932 Foundations of Quantum Mechanics von Neumann had explicitly denied any finality claim for the matter of causality. “To be sure, it would be an exaggeration to maintain that causality has thereby been done away with: quantum mechanics has, in its present form, several serious lacunae, and it may even be that it is false, although this possibility is highly unlikely.” ([22], 172f.; 327) 


	Core elements of this open-minded attitude can also be found in the writings and activities of David Hilbert who fathered the modern axiomatic method and its application in physics. Concerning Hilbert’s axiomatisation of Kirchhoff’s law of radiation, his former student Max Born related.





[B]eing conscious of the infinite complexity he faces in every experiment [the physicist] refuses to consider any theory as final. Therefore … he abhors the word ‘axiom’ to which common use clings the sense of final truth. Yet the mathematician does not deal with the factual happenings, but with logical relations; and in Hilbert’s terms the axiomatic treatment of a discipline does not signify the final assertion of certain axioms as eternal truths, but the methodological requirement: state your assumptions at the beginning of your considerations, stick to them and investigate whether these assumptions are not partially superfluous or even mutually inconsistent ([5], 90-91). 





To be sure, there was yet another side to Hilbert’s axiomatic method. He typically considered the axiomatization of phenomenological theories, such as Kirchhoff’s law, only as a transitory step while in his 1915 “The Foundations of Physics” [14] – where he could derive general relativity plus a very special form of electrodynamics from a single action principle – he explicitly believed to have arrived at a universal field theory. These two sides of Hilbert’s activities in physics indicate the important difference between the axiomatic method as a critical enterprise and the claim that a particular axiom system represents the most perfect and final formulation of a given fundamental theory [20]. If one observes this difference, Hilbert’s axiomatic method did not involve strong ontological commitments. In von Neumann’s opportunist axiomatics they almost completely disappeared. To Hilbert’s mind, the virtue of the axiomatic method was based specifically on the indivisible character of mathematical knowledge and his belief that after appropriate specialisation all problems are solvable – in a positive or in a negative sense by an impossibility proof.





Once it has become sufficiently mature for the formation of a theory, anything which can at all be the object of scientific thinking succumbs to the axiomatic method and consequentially to mathematics. By penetrating into deeper levels of axioms…we also gain deeper insight into the essence of scientific thought and become more and more conscious of the unity of our knowledge. Under the banner of the axiomatic method, mathematics appears to be destined to a leading role in all science. ([15], 415; 1115).





In all of Hilbert’s concrete axiomatizations not all axioms stand on a par; some are rather specialisations of a very general framework. In his programmatic “Axiomatic Thought”, Hilbert explains that the axiomatic method starts from a certain domain of facts, e.g., mechanics, statics, the theory of money, Galois theory which are capable of being ordered into a certain framework [Fachwerk] of concepts and their logical relations which is not external to this field of knowledge, but “is nothing other than the theory of the field of knowledge.”([15], 405/1108)� 


	The next step is to ground the fundamental propositions (the basic empirical facts) themselves, e.g., the Lagrangian equations of motions or the laws of arithmetical calculations. “Deepening the foundations” (Tieferlegung), as Hilbert baptised his method, commences from the analysis of the axioms’ mutual dependence. Accordingly, the simplest types� of deepening are just to drop a dependent axiom or conceptual simplification. Hilbert, for instance, lauds both Boltzmann and Hertz for having deepened the foundations of Lagrange’s mechanics containing arbitrary forces and constraints [Verbindungen] to either arbitrary forces without constraints or arbitrary constraints without forces. A much more ambitious deepening was the idea touted in the “The Foundations of Physics” “that a reduction of all physical constants to mathematical constants should be possible.” ([14], 407) Although admittedly this failed attempt of complete geometrisation involved an ontological reduction to the, on Hilbert’s account, simplest natural science, it did not represent a finality claim. Deepening is also treated as a kind of scientific interpretation of basic mathematical axioms. In the Foundations of Geometry [13] Hilbert had proven that the Archimedean axiom was independent of all the other axioms. 





[This is] of capital interest for physics as well, for it leads to the following result: the fact that by adjoining terrestrial distances to one another we can achieve the dimensions and distances of bodies in outer space (that is, that we can measure heavenly distances with an earthly yardstick)…The validity of the Archimedean axiom in nature stands in just as much need of confirmation by experiment as does, for instance, the familiar proposition about the sum of the angles of a triangle. ([15], 408f.; 1110)





One might consider this as a geometrical version of the cosmological principle connecting local earthbound physics with the laws of the entire Universe. Hilbert strongly advocated the study of non-Archimedian geometries in order to study alternative axiom systems.


	Besides independence and deepening the foundations, the other key element of the axiomatic method is consistency. It was Hilbert’s programme to establish the internal consistency of an axiom system relative to the consistency of arithmetic by defining appropriate number fields. External consistency is the requirement that the propositions of a given axiom system “not contradict the propositions of a neighbouring field of knowledge” ([15], 410; 1111). Both types of consistency are particularly important as a critical control of the development of the sciences because scientists continuously alter and amend their conceptual frameworks. The axiomatic method checks all these axioms systems for consistency and, moreover, deliberately modifies single axioms in order to construct consistent alternative theories, such as non-Euclidean geometries, even before they become useful in empirical science.


As regards internal consistency, Hilbert’s programme had run shipwreck with Gödel’s results. But as the axiomatic method was not so intimately connected to the existence of an absolute foundation of mathematical rigour, von Neumann could happily embark on writing up the Mathematical Foundations of Quantum Mechanics immediately after he had fully acknowledged the devastating import of Gödel’s theorems. In “The Mathematician” of 1947, he remembers.





The main hope for justification of classical mathematics – in the sense of Hilbert or of Brouwer and Weyl – being gone, most mathematicians decided to use that system any�way. After all, classical mathematics … stood on at least as sound a foundation as, for ex�ample, the existence of the electron ([23], 6).





Most interesting are the consequences he draws from these historical changes. “The variability of the concept of rigor shows that something else besides mathematical abstraction must enter into the makeup of mathematics” ([23], 4). Here empirical sciences cut in. “The most vitally characteristic fact about mathematics is … its quite peculiar relationship … to any science which inter�prets experience on a higher than purely descriptive level” ([23], 1). This re�la�tion�ship has two sides: On the one side, “throughout the natural sciences an unbroken chain of pseudo�mor�phoses, all of them pressing toward mathematics, and almost identified with the idea of scientific progress, has become more and more evident.” This was Hilbert’s standard argument for the central role of mathematics in the sciences. On the other side, “[s]ome of the best inspirations of modern mathematics (I believe, the best ones) clearly originated in the natural sciences.” (both [23], 2)


	For instance, calculus – Newton’s fluxions in particular – was explicitly created for the purpose of celestial mechanics. Quite generally, those scientific theories which cannot avail them�selves of previously created mathematical structures are likely to incite their own mathematics that sets out in a rather informal way. Yet, “[t]here are various important parts of modern mathematics in which the empirical origin is untraceable” ([23], 6), such as topology or abstract algebra. Differential geometry and group theory were “conceived as abstract, nonapplied disciplines … After a decade in one case, and a century in the other, they turned out to be very useful in physics. And they are still mostly performed in the in�di�cated, abstract, nonapplied spirit.” ([23], 7) Hence, there must be specific and self-contained mathematical criteria of success which, on the other hand, permit a rather smooth transition from empirical science to mathematics. With these criteria, von Neumann gave Hilbert’s axiomatic method a strongly pragmatic twist.


	To von Neumann, the prevailing attitude in science is opportunism: the sciences “mainly make models” ([25], 492) which are valid over limited scales only. “The justification of such a mathematical construct is solely and precisely that it is expected to work” (Ibid.), to wit, its empirical adequacy.





[T]he criterion of success of such a theory is simply whether it can, by a simple and elegant classifying and correlating scheme, cover very many phenomena, which without this scheme would seem complicated and heterogeneous, and whether this scheme covers phenomena which were not considered at the time when the scheme was evolved. ([23], 7)





“Simplicity [of course] is largely a matter of historical background … and it is very much a function of what is explained by it.” Accordingly, simplicity and unificationary power have to be constantly equilibrated. Both criteria are “clearly to a great extent of an aesthetical nature” (both [25], 492); so are the genuine mathematical ones. “One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way … One also expects ‘elegance’ in its ‘architectural’, structural makeup” ([23], 9). At this point 





the subject … is better compared to a creative one, governed by almost entirely aesthetical motivations, than to anything else and in particular, to an empirical science … As a mathematical discipline travels far from its empirical source … it is beset with very grave dangers. It becomes more and more purely aestheticizing, more and more purely l’art pour l’art (Ibid.) .… [W]henever this stage is reached, the only remedy seems … to be a rejuvenating return to the source: the reinjection of more or less directly empirical ideas. ([23], 9) 





The use of the axiomatic method occupies a prominent place within von Neumann’s opportunist program. “I feel that one of the most important contributions of mathematics to our thinking is, that it has demonstrated an enormous flexibility in the formation of concepts, a degree of flexibility to which it is very difficult to arrive in a non-mathematical mode.” ([24], 482) This flexibility has three aspects. First, after mathe�matization has revealed formal equivalencies or isomorphisms between two com�peting approaches, certain philosophical problems connected to them become simply meaningless. Second, mathematization makes it possible to for�mulate some sophisticated ‘logical cycles’ within and to find the absolute limita�tions of a theory. Third, beyond the models on which a particular axiomatization is based, mathematization may provide a certain excess content that can become heuristically fertile. One of von Neumann’s examples is this. Quantum mechanics can be formulated in two different settings, the Schrödinger and the Heisenberg representation. Von Neumann himself could rigorously prove that in quantum mechanics they are equivalent up to isomorphism. Associating both representations already with an interpretative picture, von Neumann concludes that





while there appears to be a serious philosophical controversy between the interpretations of Schrödinger [based on the wave picture and the analogy with optics] and Heisenberg [which is completely probabilistic], it is quite likely that the controversy will be settled in quite an unphilosophical way[;] …  this is not a question of accepting the correct theory and rejecting the false one. It is a matter of accepting that theory which shows greater formal adaptability for a correct extension. This is a formalistic, esthetic criterion, with a highly opportunistic flavor ([25], 498). 





It represents major scientific progress when a classical metaphysical problem becomes meaningless by reducing it to a mathematical isomorphism. But it requires already a good deal of mathematical sophistication to properly formulate a single interpretation. While in Newtonian mechanics a complete specification of the state allowed causal predictions, in quantum theory one is left with probabilities.





There is, however, something else which is causally predictable, namely the so-called wave-function. The evolution of the wave-function can be calculated from one moment to the next, but the effect of the wave-function on observed reality is only probability … And again an enormous contribution of the mathematical method to the evolution of our real thinking is, that it has made such logical cycles possible, and has made them quite specific. It has made possible to do these things in complete reliability and with complete technical smoothness. ([24], 486)





Moreover, the mathematical language can describe its own domain of validity. In relativity and quantum theory, 





by the best descriptions we can give today, there are absolute limitations to what is knowable. However, they can be expressed mathematically very precisely, by concepts which would be very puzzling when attempted to be expressed by any other means. Thus, both in relativity and in quantum mechanics the things which cannot be known always exist; but you have a considerable latitude in controlling which ones they are … This is certainly a situation of a degree of sophistication which it would be completely hopeless to develop or to handle by other than mathematical methods ([24], 487).





More concretely, Heisenberg’s uncertainty relations represent an absolute limitation to knowing simultaneously position and momentum of a quantum particle. Once the linguistic framework of quantum mechanics is accepted, such a quest becomes a meaningless problem of metaphysical realism. Like Logical Empiricists, von Neumann emphasises that choosing a conceptual framework is largely a pragmatic or aesthetic matter. This framework can, of course, be replaced if their are good reasons to do so. The next section, accordingly, discusses why von Neumann did not withdraw his No-go theorem in 1951 after he had learned about Bohm’s pilot wave model [3]. It will lead us back to the important distinction between the de Broglie-Bohm model and the de Broglie-Bohm picture.








4. Von Neumann and Bohm: Failures to Communicate?





The strongest critic of Bohm’s new interpretation [3] was, expectedly, Wolfgang Pauli. In a series of letters in 1951-1952, Bohm tried to get across his point concerning hidden variables and win Pauli’s recognition. One of his witnesses was this.


	 


It appears that von Neumann has agreed that my interpretation is logically consistent and leads to all results of the usual interpretation. (This I am told by some people.) Also, he came to a talk of mine and did not raise any objections. ([21], 392)





There are other traces of how von Neumann actually reacted to Bohm’s proposal. In the above-quoted passage comparing the Schrödinger and the Heisenberg interpretation, von Neumann does not hide his clear preference for the statistical interpretation, but acknowledges “that there have been in the last few years some interesting attempts to revive the other interpretation.” ([25], 497) In the year before he wrote.





The best description one can give today, which may not be the ultimate one (the ultimate one may even revert to the causal form, although most physicists don’t think this is likely) but at any rate the best we can tell today, is that you do not have complete determination, and that the state of the system does not determine at all what it will be immediately afterwards or later. ([24], 486)





In these days, Bohm had termed his interpretation ‘causal’, meaning – as did von Neumann – that the state vector was completely determined by the dynamics. Thus the above lines represent presumably the most conciliatory reaction to Bohm among the fathers of the Copenhagen interpretation. According to von Neumann’s methodology, this reaction seems only natural. Axiomatisation did not involve finality claims and if Bohm’s intention had been just to show that a hidden variable theory was possible, his study of an alternative model would have marked an important contribution to the axiomatic analysis. Bohm’s commitments to metaphysical realism and causality – which to many made the theory erroneously appear as a return to classical physics –, were perhaps more disturbing for the pragmatist von Neumann. 


	How, in the end, does Bohm’s theory perform with respect to von Neumann’s pragmatic-aesthetic criteria of success? First of all, facing two equations instead of one without gaining new empirical predictions, is certainly no gain in simplicity. Second, due to its inherent non-locality, Bohm’s theory is hardly fertile in view of the successes of local quantum field theories in elementary particle physics. The few Bohmian toy models known today do not really amount to a well-developed alternative research programme. At bottom, one can even argue that Bohmian quantum theory and general relativity are not externally consistent.� Third, in contrast to the GRW interpretation, Bohm’s theory does not really suggest any new subquantum physics by containing new fundamental constants. Accordingly, instead of explaining a more heterogeneous class of phenomena, the interpretation was devised to cope with problems in quantum mechanics only. 


	Thus far my reconstruction of von Neumann’s stand concerning Bohm’s 1952 interpretation. But why, so one might ask, did Bohm and von Neumann fail to actually communicate in the following years? To be sure, von Neumann had become a chief government advisor who could devote only little time to purely scientific matters. But his public lectures indicate that quantum mechanics remained a subject close to his heart. Surely, Bohm was not a mathematical physicist and still in The Undivided Universe Bohm and his co-author Basil J. Hiley insist “that the intuitive and imaginative side which makes the whole theory intelligible is as important in the long run as is the side of mathematical calculations.” ([4], 4) And, quantum logic which was a core element in von Neumann’s research programme as outlined in the 1954 address was not considered as a contribution to the measurement problem by Bohm; Bell even considered it as having arisen “from the misuse of a word.” ([2], 166)


	In an interesting sociological study “What Does a Proof Do If It Does Not Prove?”, Trevor J. Pinch [28] investigates the communication breakdown between Bohm and von Neumann. His main conceptual tool is the distinction between two modes of articulation.





The research-area mode of articulation occurs when the disputed object forms part of the particular area of concern of scientists involved in the controversy. … The official-history mode of articulation, by contrast, occurs when the cognitive object is referred to in some other context than the immediate area of concern. … I regard this context as being mainly the production of cumulative history of rationalisation of how a particular field developed. ([28], 175)





Bohm’s proposal challenged the interpretation of quantum mechanics in the research-area mode by producing a counterexample and publishing it in the discipline’s leading journal. On the contrary, “much of the response of the [quantum mechanics] elite has been articulated in the official-history mode,” ([28], 187) mainly by restating von Neumann’s theorem. Bell’s counterexample of 1966 found better acceptance than Bohm’s because he could precisely spot the defect in von Neumann’s theorem and, accordingly, dragged the opponent back into the research-area mode. 


	Adopting the perspective of Bell’s analysis, Pinch argues that von Neumann should have concluded that “only certain dimensions of Bohm’s theory were considered by the proof, and that the impossibility of ‘hidden variables’ was only achieved by neglecting a crucial dimension of Bohm’s theory, … [to wit, its] allegiance to Bohr’s doctrine of mutually exclusive experimental arrangements.” ([28], 196) As stated above, one might regard Bell’s articulation of the Bohr doctrine as an important contribution to the axiomatic analysis of quantum mechanics insofar as it makes evident the choice between two different predictively equivalent theoretical frameworks – each presumably with its own No-go theorem. 


	Pinch, however, advances the stronger thesis that von Neumann’s research technique did not at all permit him to integrate Bohr’s doctrine. His reasoning is based on the distinction between arithmomorphic concepts, which “are amenable to logical (in the narrow Aristotelian sense) sifting. Georgescu-Roegen [11] argues that logic can only handle a restricted class of concepts, that is arithmomorphic concepts. … Dialectical concepts are specifically defined as concepts which violate the Principle of Contradiction.” ([28], 202) In view of quantum logic and von Neumann’s opportunistic axiomatics it seems to me fairly obvious that this division is inappropriate for assessing the problems of an axiomatic approach to quantum theory. But it is interesting to see that this problematic distinction still permits Pinch to reconstruct the communication breakdown between Bohm and von Neumann. 





I believe that Bohr’s emphasis on experimental arrangements via his principle of mutual exclusiveness of experimental arrangements is an example of a dialectical concept. If the case of complementary properties of waves and particles is considered, Bohr’s doctrine can be seen to violate the principle of contradiction. … The failure of von Neumann’s proof to capture Bohr’s doctrine can then be understood as a failure to express a dialectical concept. ([28], 203)





Although Pinch does not claim that no axiomatic proof whatsoever be able to handle dialectical concepts, the Georgescu-Roegen distinction leads him to impute strong metaphysical commitments to arithmomorphism to the opportunist von Neumann. In the research-area mode, Pinch’s misinterpretation is harmless.





I regard the most important component of science in relation to arithmomorphism, in the research area mode, to be the research technique. … The failure of Bohm and von Neumann to communicate in their research area mode articulations can be explained in terms of their different research techniques. Von Neumann was a mathematician committed to unifying and ‘making rigorous’ the various approaches to the quantum theory by using the research technique of axiomatisation. Bohm was a theoretical physicist committed to developing new theories by considering the ontological and epistemological basis of physical concepts. Bohm’s research techniques mainly involved the development of qualitative considerations and dialectical concepts, which could be expressed mathematically but not within the framework of axiomatisation. ([28], 205)





I wonder how a concept can be expressed mathematically without admitting axiomatisation. To be sure, some concepts used in theoretical physics are ill-defined and some ‘formal’ calculations are dialectical at best. But admitting, quite in line with von Neumann, the practical value of such practices does not warrant the conclusion that no rigorous and axiomatic formulation of such concepts and calculation recipes could ever be given. Think of Dirac’s delta function emphatically objected to in the Preface to the Mathematical Foundations, because there existed an equivalent rigorous formulation in terms of Hilbert spaces. It makes perfect sense as a generalised function.


	At any rate, “much of the communication breakdown between Bohm and his adversaries has been in the official-history mode, rather than the research-area mode.” ([28], 206) This observation appears to me justified. However, Pinch goes on to claim that axiomatisation corresponds to establishing an authority structure. To be sure, already Hilbert rightly insisted that mathematics has a degree of reliability and objectivity unmatched by any empirical science. This commitment is of a methodological kind on the basis of which one can claim – as Hilbert in fact did – a special authority for mathematics. Hence the following conclusion of Pinch misses the very point. “Authority structures in science are closely related to metaphysical commitments and the particular authority of von Neumann’s proof, I think, lies in the commitment generally in physics to arithmomorphism.” ([28], 206-207) Pinch even diagnoses a “deference shown by physicists to a logical proof” ([28], 207) and concludes that a “cognitive challenge to the ‘arithmetic ideal’, such as Bohm’s approach to the quantum theory, is therefore also a social challenge to the authority structure of science” ([28], 209). This is a deep misunderstanding of the axiomatic method which is a critical or even opportunistic enterprise rather than an ontological commitment.


	According to Pinch, axiomatisation casts in stone what physicists have allegedly ascertained at a moment in history and issues far-reaching authority certificates in operation of the arithmetic ideal. Unfortunately, many physicists have been taught the axiomatic method in this vein; Richard P. Feynman’s position has been particularly influential.





Some day, when physics is complete and we know all the laws, we may be able to start with some axioms … so that everything can be deduced. ([10], 49f.) 


The mathematical rigor of great precision is not very useful in physics. But one should not criticize the mathematicians on this score … They are doing their own job. If you want some�thing else, then you work it out for yourself. ([10], 56f.) 





I think that Feynman’s account fairly well describes the attitude prevailing from the late 1930s until the 1960s when rigorous approaches regained ground with the work of Rudolf Haag, Daniel Kastler and Arthur Wightman. It presumably still holds a majority in the physics community. In the meantime, theoretical physicists had primarily been interested in quantum field theory where they found themselves amidst a set of spectacularly successful rules of computation which, however, involved blatantly inconsistent mathe�ma�tics. This historical situation seems to be also the reason why von Neumann’s works on operator algebras and the infinite tensor product in the late 1930s have not had any impact on theoretical physics. 


	To return to Pinch, the division between the axiomatic (arithmomorphic) and the dialectical approach were a characteristic trait of the history of theoretical physics in the time when Bohm and von Neumann failed to communicate. Bohm and Bell clearly shared Feynman’s view. This, to my mind, also explains the following fully acceptable conclusion of Pinch. “The lack of impact made by von Neumann at the research-area level, in contrast to his authority in official history, indicates that a crucial part of the battle for authority in modern physics occurs at the official-history level.” ([28], 207-208) I think that the present paper has made it pretty clear that the axiomatic method per se is not after writing official history. 





5. A Lakatosian Envoi





Pinch’s paper makes it tempting to conclude the present paper with some general observations in a Lakatosian spirit. Pinch explains his title as alluding to the fact that the No-hidden-variable proofs – most explicitly the one of Gudder [12] – had in fact demonstrated that hidden variables were always possible. Such can indeed happen in the Lakatosian dialectic between Proofs and Refutations [17]. Progress can be reached through constant understatements by restricting, explicitly and without further proof-analysis, both the domain of validity of the guilty lemma and the conjecture (‘exception barring’), or through constant overstatements (‘lemma incorporation’) by reducing the domain of the main conjecture to the very domain of the guilty lemma but upholding the proof. This “fundamental dialectical unity of proof and refutations”([17], 37) becomes the method of proofs and refutations by recognising that “different proofs [better: ‘improofs’] of the same naive conjecture lead to quite different theorems.” ([17], 65) 


	Could not the whole history of No-hidden-variable proofs be understood as dialectically developing the physically motivated ‘naive conjecture’ that a complete specification of quantum mechanical states is impossible under appropriate conditions (the single axioms or lemmas)? But there is, first, a certain problem here as to how to adapt Lakatos’s methodology to a situation where a physical ‘picture’ in the sense of Bell, which was the core of an entire research programme, competes with a mathematical theorem, or with von Neumann’s mathematical research programme in operator algebras and quantum logic. Second, if one took Bohm’s theory as a ‘model’ within the axiomatic setting, this difficulty would disappear, but Lakatos’s philosophy of mathematics has severe problems with the axiomatic method. They are mainly a product the unmitigated falsificationism prevailing in Proofs and Refutations. Although the late Lakatos partially revoked this position he remained committed to the view that all mathematics emerges from some quasi-empirical stuff. In the paper “What does a mathematical proof prove” which Pinch alludes to, Lakatos writes: “There is indeed no respectable formal theory which does not have in some way or another a respectable informal ancestor” ([19], 62.) David Corfield here rightly “challenge[s] anyone who holds this view to try to find an informal ancestor of an Eilenberg-MacLane space or a spectral sequence dating from the pre-axiomatic stage of algebraic topology.” ([8], 112) The advantage of von Neumann’s opportunist axiomatics here is that he can assent to the line of influence claimed by Lakatos, but is not dumbfounded in the face of group theory and modern algebra. 


	To return to the first problem, Lakatos, at the time of his death, had planned to apply his methodology of scientific research programmes to the history of mathematics. (cf. [18], 52, fn. 1) A major difficulty for this project arises from the fact that whether research programmes are progressive or degenerating depends on their relation to the empirical stuff, to wit, whether the research programme predicts some hitherto unknown empirical or mathematical quasi-facts. Yet, the status of this quasi-empirical ontology of mathematics which is defined exclusively by means of the flow of truth remains somewhat foggy. While ‘Euclidean’, that is, axiomatised theories are built on indubitable axioms from which truth flows downward through valid inferences, in quasi-empirical theories truth is injected at the bottom by virtue of a set of accepted basic statements, so that falsity is retransmitted upward. Theoretical physics is, of course, quasi-empirical in this sense and empirical in the usual sense.


	There are certainly cases, such as the one studied in the first part of Proofs and Refutations, where the quasi-empirical stuff is evident to all competitors. But, even in such cases “rivalry between research programmes concerns high level issues,” ([9], 276.) because in comparison to physical science “[m]athematics appears to have an extra degree of freedom at this [basic] level [where battles are usually fought out] which makes it improbable that programmes will be in direct competition for precisely the same territory.” ([9], 276) Hard cores do not boil down simply to axioms. High level questions, among them general aims and aesthetic motives, might enter the hard core shifting emphasis away from conjectures as the sole driving force of research programmes.


	If a physically driven and a mathematically driven research programme compete, such as in the case considered here, these higher levels might even be incompatible. Certainly, there is competition on mathematical territory if we take Bohm’s theory simply as a model. This combines with physical disagreement about a suitable concept of hidden variable. This was the story I had intended to tell in this paper and Bell’s No-go theorem has its proper place in it. Moreover, Bohm’s and Bell’s common sense realism philosophically rivals von Neumann’s instrumentalism and his opportunist axiomatics. But the Bohm picture does not dispute common ground with the axiomatic method, Bell’s repeated statements to the contrary notwithstanding.
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� I do not find this historical conjecture convincing because for roughly two decades Einstein and von Neumann were colleagues at the Institute for Advanced Study in Princeton.


� Here I have to thank David Malament for the encouraging comment “Michael, isn’t that obvious?” Indeed, but few authors give due weight to this point.


� Thanks to Guido Bacciagaluppi for the hint on Wigner’s footnote.


� Wigner’s acknowledgement also includes Abner Shimony.


� At bottom, Bell continues to oppose two von Neumanns, one who claimed finality for his axioms and another one who advocated subjectivity in the theory of measurement. Admittedly, this was not a coherent train of thought. In [31], Sec. 7, I argue that von Neumann’s 1932 book is indebted to two philosophical traditions which hardly fit together in a consistent fashion. This fact, I think, was the reason for many misunderstandings of von Neumann’s position, among them Bell’s.


� The quotation is from Bertrand Russell (1953), Mysticism and logic, London: Penguin, 75.


� This notion of ‘completeness’ differs from the one figuring in Gödel’s Incompleteness Theorems.


� The German term “Fachwerk” elucidates that the concepts are contained in the factual body of the field of knowledge and are no external scaffolding.


� In [32], Sec. 4, I distinguish eight types of deepening the foundations some of which deliberately transcend the border between mathematics and physics and flesh out Hilbert’s repeated believe in a (non-Leibnizian) pre-established harmony between mathematics and physics.


� Cf. most recently the paper of Barrett [1].
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