Skip to main content
Log in

Agnostic Science. Towards a Philosophy of Data Analysis

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

In this paper we will offer a few examples to illustrate the orientation of contemporary research in data analysis and we will investigate the corresponding role of mathematics. We argue that the modus operandi of data analysis is implicitly based on the belief that if we have collected enough and sufficiently diverse data, we will be able to answer most relevant questions concerning the phenomenon itself. This is a methodological paradigm strongly related, but not limited to, biology, and we label it the microarray paradigm. In this new framework, mathematics provides powerful techniques and general ideas which generate new computational tools. But it is missing any explicit isomorphism between a mathematical structure and the phenomenon under consideration. This methodology used in data analysis suggests the possibility of forecasting and analyzing without a structured and general understanding. This is the perspective we propose to call agnostic science, and we argue that, rather than diminishing or flattening the role of mathematics in science, the lack of isomorphisms with phenomena liberates mathematics, paradoxically making more likely the practical use of some of its most sophisticated ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achinstein P. (1983) The nature of explanation. Oxford University Press, New York

    Google Scholar 

  • Alligood K. T., Sauer T., Yorke J. (1996) Chaos. An introduction to dynamical systems. Springer, New York

    Google Scholar 

  • Altland A., Simons B. (2006) Condensed matter field theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Baik J., Paek J. (2000) A neural network model for predicting typhoon intensity. Journal of Meteorology Society Japan 78: 857–869

    Google Scholar 

  • Bailer-Jones D. M., Bailer-Jones C. A. L. (2002) Modeling data: Analogies in neural networks, simulated annealing and genetic algorithms. In: Magnani L. (ed.) Model-based reasoning: Science,technology, values. Kluwer-Academic, Dordrecht, pp 147–165

    Google Scholar 

  • Baldi P., Hatfield G. W. (2002) DNA microarrays and gene expression: From experiments to data analysis and modeling. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Batterman R. (2002) The devil in the details. Oxford University Press, Oxford

    Google Scholar 

  • Batterman R. (2010) On the explanatory role of mathematics in empirical science. British Journal for the Philosophy of Science 61(1): 1–25

    Article  Google Scholar 

  • Bonchev D., Rouvray D. H. (1991) Chemical graph theory: Introduction and fundamentals. Abacus Press, New York

    Google Scholar 

  • Christini D.J., Stein K.M., Markowitz M.S., Mittal S., Slotwiner D.J., Scheiner M.A., Iwai S., Lerman B.B. (2001) Nonlinear-dynamical arrhythmia control in hyumans. Proceedings of the National Academy of Science 98: 5827–5832

    Article  Google Scholar 

  • Cichocki A., Amari S. (2002) Adaptive blind signal and image processing. Wiley, New York

    Book  Google Scholar 

  • Coifman, R. R., & Maggioni, M. (2008) Geometry, analysis and signal processing on digital data, emergent structures, and knowledge building. SIAM News, 41(10). http://www.siam.org/news/news.php?id=1475.

  • De Regt H. W., Dieks D. (2005) A contextual approach to scientific understanding. Synthese 144: 137–170

    Article  Google Scholar 

  • Donoho, D. (2000). High-dimensional data analysis. The curses and blessings of dimensionality. 2000. AMS Lecture, Math. Challanges of the 21st Century, 2000. Available at www.stat.stanford.edu/~donoho/Lectures/AMS2000/Curses.pdf.

  • Freund, Y., & Schapire, R. (1999). A short introduction to boosting. Journal of Japan Society for Artifcial Intelligence, 14(5), 771–780. In Japanese, English translation available at www.cs.princeton.edu/~schapire/boost.html.

  • Friedman M. (1974) Explanation and scientific understanding. The Journal of Philosophy 71: 5–19

    Article  Google Scholar 

  • Good I. J. (1983) The philosophy of exploratory data analysis. Philosophy of Science 50(2): 283–295

    Article  Google Scholar 

  • Harris, T. (2003). Data models and the acquisition and manipulation of data. Philosophy of Science, 70(5), 1508–1517. Proceedings of the 2002 Biennial Meeting of the Philosophy of Science Association. Part I: Contributed Papers.

  • Hastie, T., Tibshirami, R., Eisen, M. B., Alizadeh, A., Levy, R., Staudt, L., Chan, W. C., Botstein, D., & Brown, P. (2000). ‘gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. 2000. Available at: genomebiology.com/2000/1/2/research/0003/.

  • Hastie T., Tibshirami R., Friedman J. (2001) The elements of statistical learning. Springer, New York

    Google Scholar 

  • Humphreys P. (1995) Computational science and scientific method. Minds and Machines 95(5(4)): 499–512

  • Humphreys P. (2004) Extending ourselves. Oxford University Press, New York

    Book  Google Scholar 

  • Humphreys P. (2009) The philosophical novelty of computer simulation methods. Synthese 169(3): 615–626

    Article  Google Scholar 

  • Kalnay E. (2003) Atmospheric modeling, data assimilation, and predictability. Cambridge University Press, Cambridge

    Google Scholar 

  • Kantz H., Schreiber T. (2003) Nonlinear time series analysis. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Kapitaniak T. (1996) Controlling chaos. Academic Press, Boston

    Google Scholar 

  • Kaufman L., Rousseeuw P. J. (2005) Finding groups in data: An introduction to cluster analysis. Wiley-Interscience, New York

    Google Scholar 

  • Lee T. W. (1998) Independent component analysis. Theory and applications. Kluwer A.P, Boston

    Google Scholar 

  • Lehnard J. (2009) The great deluge: Simulation modeling and scientific understanding. In: Regt H. W., Leonelli S., Eigner K. (eds) Scientific understanding: Philosophical perspectives. University of Pittsburgh Press, Pittsburgh, pp 169–186

    Google Scholar 

  • Mallat S. (2008) A wavelet tour of signal processing. Academic Press, San Diego

    Google Scholar 

  • McComb W. D. (2008) Renormalization methods: A guide for beginners. Oxford University Press, New York

    Google Scholar 

  • McCulloch W., Pitts W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 7: 115–133

    Article  Google Scholar 

  • McShane L. M., Radmacher M. D., Freidlin B., Yu R., Li M., Simon R. (2002) Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18: 1462–1469

    Article  Google Scholar 

  • Morrison M. (2006) Scientific understanding and mathematical abstraction. Philosophia 34: 337–353

    Article  Google Scholar 

  • Mullis K. B., Ferre F., Gibbs R. A. (1994) The polymerase chain reaction. Birkhauser, Boston

    Google Scholar 

  • Nishimori H. (1999) Statistical physics of spin glasses and information procesing. Oxford university press, New York

    Google Scholar 

  • Ott E., Grebogi C., Yorke J. A. (1990) Controlling chaos. Physical Review Letters 64: 1196–1199

    Article  Google Scholar 

  • Ramsay J. O., Silverman B. W. (1997) Functional data analysis. Springer, New York

    Google Scholar 

  • Ramsay J. O., Silverman B. W. (2002) Applied functional data analysis. Springer, New York

    Book  Google Scholar 

  • Ripley B. D. (1996) Pattern recognition and neural networks. Cambridge University Press, New York

    Google Scholar 

  • Salmon W., Kitcher P. (1989) Scientifical explanation, volume XIII of minnesota studies in the philosophy of science. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Sauer T., Yorke J., Casdagli M. (1991) Embedology. Journal of Statistical Physics 65: 579–616

    Article  Google Scholar 

  • Scriven M. (1962) Explanations, predictions, and laws. In: Feigl H., Maxwell G. (eds) Scientific explanation, space, and time, volume 3 of minnesota studies in the philosophy of science. University of Minnesota Press, Minneapolis, pp 170–230

    Google Scholar 

  • Simon R. M., Korn E. L., McShane L. M., Radmacher M. D., Wright G. W., Zhao Y. (2003) Design and analysis of DNA microarray investigations. Springer, New York

    Google Scholar 

  • Simpkins F., Kohn E., Espina V., Petricoin A. F. III, Liotta L. A. (2004) Beyond genomics to functional proteomics. Genomics and Protenomics 4(9): S7–S14

    Google Scholar 

  • So P., Francis J.T., Netoff T.I., Gluckman B.J., Schiff S.J. (1998) Periodic orbits: A new language for neuronal dynamics. Proceedings of the National Academy of Science 74: 2776–2785

    Google Scholar 

  • Suppes P. (1962) Models of data. In: Nagel E., Suppes P., Taski A. (eds) Logic, methodology and philosophy of science, volume 898 of Lecture Notes in Mathematics, pages 252–261. Stanford: Stanford Univ. Press.

  • Szlam A. D., Maggioni M., Coifman R. R. (2008) Regularization on graphs with function-adapted diffusion processes. Journal of Machine Learning Research 9: 1711–1739

    Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbolence. volume 898 of Lecture Notes in Mathematics. Berlin, New York: Springer-Verlag.

  • Toulmin S. (1963) Foresight and understanding. Harper and Row, New York, NY

    Google Scholar 

  • Trottenberg U., Oosterlee C. W., Schuller A. (2000) Multigrid. Academic Press, San Diego

    Google Scholar 

  • Trout J. D. (2002) Scientific explanation and the sense of understanding. Philosophy of Science 69: 212–233

    Article  Google Scholar 

  • Weber E. (1996) Explaining, understanding and scientific theories. Erkenntnis 44: 1–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Napoletani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napoletani, D., Panza, M. & Struppa, D.C. Agnostic Science. Towards a Philosophy of Data Analysis. Found Sci 16, 1–20 (2011). https://doi.org/10.1007/s10699-010-9186-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-010-9186-7

Keywords

Navigation