Skip to main content

The Pathogenesis of Alzheimer’s Disease. What Causes Dementia?

  • Conference paper
Book cover Neurophilosophy and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Despite a long held theory citing plaques and tangles as the proposed cause of dementia, available data seem to refute this view statistically. On the other hand, synaptic density in association cortex correlates very strongly with dementia scores, and it is the loss of cortical synapses which we propose to be the immediate or proximate cause of dementia in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez WC (1946) Cerebral arteriosclerosis with small commonly unrecognized apoplexies. Geriatrics 1: 159–166

    Google Scholar 

  • Alzheimer A (1907) Über eine Erkrankung der Hirnrinde. All Z Psychiatr 64: 146–148

    Google Scholar 

  • Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism and Alzheimer’s disease. Ann Neurol 10: 499–505

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 14: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Ball MJ, Hachinski V, Fox A, Kirshen AJ, Fisman M, Blume W, Kral VA, Fox H (1985) A new definition of Alzheimer’s disease: a hippocampal dementia. Lancet 1: 4–16

    Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417

    Article  PubMed  CAS  Google Scholar 

  • Blessed G, Tomlinson BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 114: 797–811

    Article  PubMed  CAS  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1981) Selective loss of neurones of origin of adrenergic projections to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1: 783–784

    Article  PubMed  CAS  Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AM (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496

    Article  PubMed  CAS  Google Scholar 

  • Candy JM, Oakley AE, Klinowski J, Carpenter TA, Perry RH, Atack JR, Perry EK, Blessed G, Fairbairn A, Edwardson JA (1986) Alumino-silicates and senile plaque formation in Alzheimer’s disease. Lancet 1: 354–357

    Article  PubMed  CAS  Google Scholar 

  • Cole C, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452: 165–174

    Article  PubMed  CAS  Google Scholar 

  • Corsellis JAN (1962) Mental illness and the ageing brain: the distribution of pathological change in a mental hospital population. Oxford University Press, London

    Google Scholar 

  • Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 180: 511–513

    Article  PubMed  CAS  Google Scholar 

  • Crystal HA, Davies P (1982) Cortical substance P-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type. J Neurochem 38: 1781–1784

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJR (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2: 1403

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia. Nature 288: 279–280

    Article  PubMed  CAS  Google Scholar 

  • DeBoni U, Crapper DR (1978) Paired helical filaments of the Alzheimer type in cultured neurones. Nature 271: 566–568

    Article  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198

    Google Scholar 

  • Fuld PA (1978) Psychological testing in the differential diagnosis of the demential. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer’s disease: senile dementia and related disorders. Raven, New York, pp 185–193

    Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular fibril protein. Biochem Biophys Res Commun 122 (3): 1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, DeTeresa R, Thal L, Pay MM, Hofstetter R, Klauber M, Rice V, Butters N, Alford M (1990) The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology 40: 1–8

    PubMed  CAS  Google Scholar 

  • Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbria transection. J Neurosci 6: 2155–2162

    PubMed  CAS  Google Scholar 

  • Hefti F, Weiner WJ (1986) Nerve growth factor and Alzheimer’s disease. Ann Neurol 20: 275–281

    Article  PubMed  CAS  Google Scholar 

  • Ishii T (1966) Distribution of Alzheimer’s neurofibrillary changes in the brainstem and hypothalamus of senile dementia. Acta Neuropathol (Berl) 6: 181–187

    Article  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease A4 protein resembles a cell surface receptor. Nature 325: 733–736

    Article  PubMed  CAS  Google Scholar 

  • Klatzo L, Wisniewski H, Streicher E (1965) Experimental productioxn of neurofibrillary degeneration. I. Light microscopic observations. J Neuropathol Exp Neurol 24: 187–199

    Google Scholar 

  • Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7: 1799–1808

    PubMed  CAS  Google Scholar 

  • Lindsay RM, Harmar AJ (1989) Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 337: 362–364

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Terry RD, Buzsaki G (1989) Thalamic nuclei in Alzheimer’s disease: evidence against the cholinergic hypothesis of plaque formation. Brain Res 493: 240–246

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Terry RD, Alford M, DeTeresa R (1990 a) Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J Histochem Cytochem 38: 837–844

    Google Scholar 

  • Masliah E, Terry RD, Mallory M, Alford M, Hansen LA (1990b) Diffuse plaques do not te synapse loss in Alzheimer’s disease. Am J Pathol 137: 1293–1297

    PubMed  CAS  Google Scholar 

  • Masliah E, Simms G, Wienman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Jid plaque core protein in Alzheimer’s disease and Down’s syndrome. Proc Natl Acad JSA 82: 4245–4249

    Article  Google Scholar 

  • Masliah S (1976) Mental status examination for organic mental syndrome in elderly patients. In:.;l1ack L, Karasu TB (eds) Geriatric psychiatry. Grune and Stratton, New York, pp 7–121

    Google Scholar 

  • Msvone F, Jahn R, DiGioia G, Stukenbrok H, Greengard P, DeCamilli P (1986) Protein p38: an integral membrane protein specific of small vesicles of neurons and neuroendocrine cells. J Cell Biol 103: 2511–2527

    Article  Google Scholar 

  • Perl DP, Brody AR (1980) X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208: 207–209

    Article  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1: 189

    Article  PubMed  CAS  Google Scholar 

  • Roberts E (1986) Alzheimer’s disease may begin in the nose and may be caused by aluminosilicates. Neurobiol Aging 7: 561–567

    Article  PubMed  CAS  Google Scholar 

  • Salmon DP, Thal LJ, Butters N, Heindel WC (1990) Longitudinal evaluation of dementia of the Alzheimer type: a comparison of 3 standardized mental status examinations. Neurology 40: 1225–1230

    PubMed  CAS  Google Scholar 

  • Sims NR, Bowen DM, Davison AN (1981) Acetylcholine synthesis and 14C carbon dioxide production from (U-14C) glucose by tissue prisms from human neocortex. Biochem J 196: 867–876

    PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, Growden J, Bruni A, Foncin J-F, Salmon D, Frommelt P, Amaducci L, Sorbi S, Piacentini S, Stewart GD, Hobbs WJ, Conneally PM, Gusella JF (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235: 885–890

    Article  Google Scholar 

  • Terry RD, Pena C (1965) Experimental production of neurofibrillary degeneration. II. Electron microscopy, phosphatase histochemistry and electron probe analysis. J Neuropathol Exp Neurol 24: 200–210

    Google Scholar 

  • Terry RD, Hansen LA, DeTeresa R, Davies P, Tobias H, Katzman R (1987) Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles. J Neuropathol Exp Neurol 46: 262–268

    Article  PubMed  CAS  Google Scholar 

  • Tourtelotte WG, van Hoesen GW, Hyman BT, Tikoo RK, Damasio AR (1989) Afferents of the thalamic reticular nucleus are pathologically altered in Alzheimer’s disease. J Neuropathol Exp Neurol 48: 336

    Article  Google Scholar 

  • Verano A, Chandran R, Feraldi F, Bennett D, Reyes MG (1990) Volume density of senile plaques in Alzheimer’s disease. J Neuropathol Exp Neurol 49: 307

    Article  Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10: 122–126

    Article  PubMed  CAS  Google Scholar 

  • Whitson JS, Selkoe DJ, Cotman CW (1989) Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 243: 1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Williams LR, Varon S, Peterson GM, Victorin K, Fischer W, Bjorklund A, Gage FH (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection. Proc Natl Sci USA 83: 9231–9235

    Article  CAS  Google Scholar 

  • Wisniewski HM, Wegiel J, Wrzolek M (1990) Morphogenesis of amyloid star in the Alzheimer’s disease brain and in the liver and spleen in experimental amyloidosis. J Neuropathol Exp Neurol 49: 267

    Article  Google Scholar 

  • Yankner BA, Shooter EM (1982) The biology and mechanism of action of nerve growth factor. Annu Rev Biochem 51: 845–868

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Yates CM, Simpson J, Gordon A (1986) Regional brain 5 hydroxytryptamine levels are reduced in senile Down’s syndrome as in Alzheimer’s disease. Neurosci Lett 65: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Zola-Morgan SM, Squire LR (1990) The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250: 288–290

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Terry, R.D. (1992). The Pathogenesis of Alzheimer’s Disease. What Causes Dementia?. In: Christen, Y., Churchland, P.S. (eds) Neurophilosophy and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46759-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46759-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46761-5

  • Online ISBN: 978-3-642-46759-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics