Skip to main content
Log in

The emancipation of chemistry

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

In his classic work The Mind and its Place in Nature published in 1925 at the height of the development of quantum mechanics but several years after the chemists Lewis and Langmuir had already laid the foundations of the modern theory of valence with the introduction of the covalent bond, the analytic philosopher C. D. Broad argued for the emancipation of chemistry from the crass physicalism that led physicists then and later—with support from a rabblement of philosophers who knew as much about chemistry as etymologists—to believe that chemistry reduced to physics. Here Broad’s thesis is recast in terms more familiar to chemists. In the hard sell of particle physics, several prominent figures in chemistry—Hoffmann, Primas, and Pauling—have had their views interpreted to imply that they were sympathetic to greedy reductionism when in fact they were not. Indeed, being chemists without physicists as alter egos, they could not but side with Broad’s contention that chemistry, as a science that deals primarily in emergent phenomena which are beyond the purview of physicalism, owes no acquiescence to particle physics and its ethereal wares. Historically, among the most widely used expediencies in chemistry and materials science are additivity or mixture rules and their cohort transferability, all of which are devised and used under the mantle of naive reductionism. Here it is argued that while the transfer of functional groups between molecules works empirically to an extent, it is strictly outlawed by the no-cloning theorem of quantum mechanics. Several illustrative examples related to chemistry’s irreducibility to physics are presented and discussed. The failure of naive reductionism exhibited by the deep-inelastic scattering of leptons by A > 2 nuclei is traced to the same flawed reasoning that was the original basis of Moffitt’s ‘atoms in molecules’ hypothesis, the neglect of context, nuclei in the case of high-energy physics and molecules in the case of chemistry. A non-exhaustive list of other contexts from physics, chemistry, and molecular biology evidencing similar departures from the ideal of additivity or reductionism is provided for the perusal of philosophers. Had the call by the mathematician J. T. Schwartz for developments in mathematical linguistics possessed of a less single, less literal, and less simple-minded nature been met, perhaps it might have persuaded scientists to abandon their regressive fixation with unphysical reductionism and to adapt to new methodologies that engender a more nuanced handling of ubiquitous emergent phenomena as they arise in Nature than is the case today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. It is rare to find in the technical literature physicists acknowledging a belief that the principle of reductionism is also a principle of physics. In the opening sentence of H. Spiesberger, M. Spira, and P. M. Zerwas’ The Standard Model: Physical Basis and Scattering Experiments essay, in: R. Pike and P. Sabatier (eds.), Scattering, Academic Press, San Diego (2002), they affirm (loc. cit., p. 1505) that “A most fundamental element of physics is the reduction principle.”

  2. See also, M. Alonso’s Comments on Primas’ essay with a rebuttal by Primas, loc. cit, pp. 134–143.

  3. Therein a consistent set of recommended Pascal constants for estimating the diamagnetism of a molecule is provided from the mess of values scattered in the primary and secondary literature.

  4. There it is demonstrated that two fermions, each moving in a harmonic potential in addition to being coupled via harmonic oscillator forces, behave differently than if they were uncoupled: the Hartree-Fock ground state is never the same as the exact ground state as long as the particles interact; and in the exact ground state, the two interacting particles are not the same as two noninteracting particles, the whole being different than the sum of the parts just as Schrödinger (1935) had long anticipated.

  5. I am grateful to Professor A. J. Stace, F.R.S for enlightening me on the likely difficulties in observing gas phase Be solution chemistry.

  6. Let there be no misunderstanding, the change in 7Be’s half-life with chemical environment is so small that it has no bearing whatsoever on the chronography of the universe and the time since the big bang that life first evolved via natural selection on Earth or anywhere else for that matter.

  7. For the quiet of Kuhnian relativists, it is to be noted that ‘context’ in respect to the objective reality of nucleons in a nucleus or atoms in a molecule is invariant across the same nuclei or the same molecules, respectively, whatever the anthropological milieu wherever they be found.

  8. Cartwright’s ’dappled’ world that Anderson got so worked up about was from the opening line of Pied Beauty, one of three curtal (=3/4 Petrarchan) sonnets by the Victorian poet Gerard Manley Hopkins, S.J.

  9. DNA’s information is encoded classically in the identities of its ATCG bases and not in its state so that life is a go via cloning or replication.

References

  • Adam, A.M.: Farewell to certitude: Einstein’s novelty on induction and deduction, fallibilism. J. Gen. Philos. Sci. 31, 19 (2000)

    Article  Google Scholar 

  • Adler, S.L.: Generalized bag models as mean-field approximations to QCD. Phys. Lett. B 110, 302 (1982)

    Article  Google Scholar 

  • Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge, UK (2004)

    Book  Google Scholar 

  • Admal, N.C., Tadmor, E.B.: A unified interpretation of stress in molecular systems. J. Elast. 100, 63 (2010)

    Article  Google Scholar 

  • Admal, N.C., Tadmor, E.B.: A unified interpretation of stress in molecular systems. J. Chem. Phys. 134, 184106 (2011) et passim

    Google Scholar 

  • Akoury, D. et al.: The simplest double slit: Interference and entanglement in double photoionization of H2. Science 318, 949 (2007)

    Article  Google Scholar 

  • Al-affan, I.A.M., Watt, D.E.: Mean excitation energies for molecules in gaseous and condensed phases. Radiat. Protect. Dosim. 11, 113 (1985)

    Google Scholar 

  • Alastuey, A. et al.: Exact results for thermodynamics of the hydrogen plasma: Low-temperature expansions beyond Saha theory. J. Stat. Phys. 130, 1119 (2008)

    Article  Google Scholar 

  • Allen, L.C.: Chemistry and electronegativity. Int. J. Quantum Chem. 49, 253 (1994)

    Article  Google Scholar 

  • Allred, A.L.: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215 (1961)

    Article  Google Scholar 

  • Anderson, P.W.: More is different. Science 177, 393 (1972)

    Article  Google Scholar 

  • Anderson, P.W.: Science: a ‘dappled world’ or a ‘seamless web’? Stud. Hist. Phil. Mod. Phys. 32, 487 (2001)

    Article  Google Scholar 

  • Antezza, M. et al.: Casimir-Lifshitz force out of thermal equilibrium and asymptotic nonadditivity. Phys. Rev. Lett. 97, 223203 (2006)

    Article  Google Scholar 

  • Appelquist, T., Carazzone, J.: Infrared singularities and massive fields. Phys. Rev. D 11, 2856 (1975)

    Article  Google Scholar 

  • Applequist, J., Carl, J.R., Fung, K.-K.: An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94, 2952 (1972)

    Article  Google Scholar 

  • Arai, T.: Application of the method of deformed atoms in molecules to the hydrogen molecule. J. Chem. Phys. 26, 451 (1957)

    Article  Google Scholar 

  • Arai, T.: General analysis of various methods of atoms in molecules. Rev. Mod. Phys. 32, 370 (1960)

    Article  Google Scholar 

  • Arai, K. et al.: Structure of the mirror nuclei 9Be and 9B in a microscopic cluster model. Phys. Rev. C 54, 132 (1996)

    Article  Google Scholar 

  • Arnold, R.G. et al.: Comparison of the deep-inelastic structure functions of deuterium and aluminum nuclei. Phys. Rev. Lett. 52, 727 (1984)

    Article  Google Scholar 

  • Ashman, J. et al.: European Muon collaboration. A measurement of the spin asymmetry and determination of the structure function g 1 in deep inelastic muon-proton scattering. Phys. Lett. 206, 364 (1988)

    Google Scholar 

  • Athar, M.S., Simó, I.R., Vacas, M.J.V.: Nuclear medium modification of the F 2 (x,Q 2) structure function. Nucl. Phys. A 857, 29 (2011)

    Article  Google Scholar 

  • Aubert, J.J. et al. [European Muon Collaboration]: The ratio of the nucleon structure functions F N2 for iron and deuterium. Phys. Lett. B 123, 275 (1983)

    Google Scholar 

  • Audi, G. et al.: The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 729, 3 (2003)

    Article  Google Scholar 

  • Austern, N.: Evaluation of the interaction effect in n-p capture. Phys. Rev. 92, 670 (1953)

    Article  Google Scholar 

  • Austern, N., Ross, M.: Evaluation of the interaction effect in n-p capture. Phys. Rev. 117, 1506 (1960)

    Article  Google Scholar 

  • Austern, N., Sachs, R.G.: Interaction effects on radiative transitions in nuclei. Phys. Rev. 81, 710 (1951)

    Article  Google Scholar 

  • Avbelj, F., Baldwin, R.L.: Limited validity of group additivity for the folding energetics of the peptide group. Proteins 63, 283 (2006)

    Article  Google Scholar 

  • Axilrod, B.M., Teller, E.: Interaction of the van der Waals type between three atoms. J. Chem. Phys. 11, 299 (1943)

    Article  Google Scholar 

  • Bain, G.A., Berry, J.F.: Diamagnetic corrections and Pascal’s constants. J. Chem. Ed. 85, 532 (2008)

    Article  Google Scholar 

  • Baird, D., Scerri, E., McIntyre, L. (eds.): Philosophy of Chemistry, Synthesis of a New Discipline. Springer, Dordrecht (2006)

    Google Scholar 

  • Basu, D., Ghose, P.: Comments on “New extended model of hadrons”. Phys. Rev. D 12, 4006 (1975)

    Article  Google Scholar 

  • Batista, E.R., Xantheas, S.S., Jónsson, H.: Molecular multipole moments of water molecules in ice Ih. J. Chem. Phys. 109, 4546 (1998)

    Article  Google Scholar 

  • Batterman, R.W.: The Devil in the Details, Asymptotic Reasoning in Explanation, Reduction, and Emergence. Oxford University Press, New York (2002)

    Google Scholar 

  • Benoist, P. et al.: The decay probability of 7Be as a function of the ionization of the atom. Phys. Rev. 76, 1000 (1949)

    Article  Google Scholar 

  • Bensaude-Vincent, B., Simon, J.: Chemistry, The Impure Science. Imperial College Press, London (2008)

    Book  Google Scholar 

  • Benson, S.W.: Thermochemical Kinetics, Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed. Wiley, New York (1973)

    Google Scholar 

  • Benson, S.W., Buss, J.H.: Additivity rules for the estimation of molecular properties. Thermodynamic properties. J. Chem. Phys. 29, 546 (1958)

    Article  Google Scholar 

  • Berkowitz, J.: Atomic and Molecular Photoabsorption. Academic Press, San Diago, CA (2002)

    Google Scholar 

  • Bhushan, N., Rosenfeld, S. (eds.): Of Minds and Molecules, New Philosophical Perspectives on Chemistry. Oxford University Press, New York (2000)

    Google Scholar 

  • Bingel, W.A.: United atom treatment of the behavior of potential energy curves of diatomic molecules for small R. J. Chem. Phys. 30, 1250 (1959)

    Article  Google Scholar 

  • Bissantz, C., Kuhn, B., Stahl, M.: A medicinal chemist’s guide to molecular interactions. J. Med. Chem. 53, 5061 (2010)

    Article  Google Scholar 

  • Blanco, F., Garcia, G.: Screening corrections for calculation of electron scattering differential cross sections from polyatomic molecules. Phys. Lett. A 330, 230 (2004)

    Article  Google Scholar 

  • Blankenbecler, R. et al.: Some tests of relativistic SU(6) schemes. Phys. Rev. Lett. 14, 518 (1965)

    Article  Google Scholar 

  • Blin-Stoyle, R.J.: Theories of nuclear moments. Rev. Mod. Phys. 28, 75 (1956)

    Article  Google Scholar 

  • Bobeldijk, M., van der Zande, W.J., Kistemaker, P.G.: Simple models for the calculation of photoionization and electron impact ionization cross sections of polyatomic molecules. Chem. Phys. 179, 125 (1994)

    Article  Google Scholar 

  • Bodek, A. et al.: Electron scattering from nuclear targets and quark distributions in nuclei. Phys. Rev. Lett. 50, 1431 (1983)

    Article  Google Scholar 

  • Bodek, A.: Comparison of the deep-inelastic structure functions of deuterium and aluminum nuclei. Phys. Rev. Lett. 51, 534 (1983)

    Article  Google Scholar 

  • Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863 (1926a)

    Article  Google Scholar 

  • Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803 (1926b)

    Article  Google Scholar 

  • Born, M.: The statistical interpretation of quantum mechanics. Science 122, 675 (1955)

    Article  Google Scholar 

  • Bouchez, R. et al.: Variation de la période du nuclide 7Be en fonction du degré d’ionisation de l’atome. J. Phys. Radium 8, 336 (1947)

    Article  Google Scholar 

  • Bouchez, R. et al.: Nouvelle détermination de la différence des périodes de 7Be métallique et de 7BeF2. J. Phys. Radium 17, 363 (1956)

    Article  Google Scholar 

  • Boys, S.F.: Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another, Rev. Mod. Phys. 32, 296 (1960)

    Article  Google Scholar 

  • Braaten, E., Hammer, H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006) et passim

    Google Scholar 

  • Brady, G.P., Sharp, K.A.: Decomposition of interaction free energies in proteins and other complex systems. J. Mol. Biol. 254, 77 (1995)

    Article  Google Scholar 

  • Bragg, W.H.: Studies in Radioactivity. MacMillan, London (1912)

    Google Scholar 

  • Broad, C.D.: The Mind and its Place in Nature. Harcourt Brace, New York (1925)

    Google Scholar 

  • Brock, C.W., Glusker, J.P.: Organization of water around a beryllium cation. Inorg. Chem. 32, 1242 (1993)

    Article  Google Scholar 

  • Brooks, D.H.M.: How to perform a reduction. Philos. Phenom, Res. 54, 803 (1994)

    Article  Google Scholar 

  • Brown, G.E., Rho, M.: The little bag. Phys. Lett. B 82, 177 (1979)

    Article  Google Scholar 

  • Brown, G.E., Rho, M., Vento, V.: Little bag dynamics. Phys. Lett. B 84, 383 (1979)

    Article  Google Scholar 

  • Brown, L.M., Pais, A., Pippard, B. (eds.): Twentieth Century Physics. Institute of Physics, Bristol and Philadelphia (1995)

    Google Scholar 

  • Brüche, E.: Wirkungsquerschnitt und Molekelbau in der Pseudoedelgasreihe, Ne–HF–H2O−NH3−CH4. Ann. Phys. (Leipzig) 1, 93 (1929)

    Google Scholar 

  • Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  Google Scholar 

  • Bunge, M.: Is chemistry a branch of physics? J. Gen. Philos. Sci. 13, 209 (1982)

    Google Scholar 

  • Burkard, G., Brito, F.: Nonadditivity of decoherence rates in superconducting qubits. Phys. Rev. B 72, 054528 (2005)

    Article  Google Scholar 

  • Byers Brown, W.: On the quantal virial equation for the pressure. J. Chem. Phys. 28, 522 (1958)

    Article  Google Scholar 

  • Cahn, R.N.: The eighteen arbitrary parameters of the standard model in your everyday life. Rev. Mod. Phys. 68, 951 (1996)

    Article  Google Scholar 

  • Canton, S.E. et al.: Direct observation of Young’s double-slit interferences in vibrationally resolved photoionization of diatomic molecules. Proc. Natl. Acad. Sci. USA 108, 7302 (2011)

    Article  Google Scholar 

  • Cao, T.Y. (ed.): Conceptual Foundations Quantum Field Theory. Cambridge University Press, Cambridge, UK (1999)

    Google Scholar 

  • Cao, T.Y.: Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge, UK, 1997), Sec. 11.4.

  • Cayley, A.: On the mathematical theory of isomers. Phil. Mag. 67, 444 (1874)

    Google Scholar 

  • Chodos, A. et al.: New extended model of hadrons. Phys. Rev. D 9, 3471 (1974)

    Article  Google Scholar 

  • Clementi, E. et al.: Nonadditivity of interaction in water trimers. Int. J. Quantum Chem. 17, 377 (1980)

    Article  Google Scholar 

  • Clough, S.A. et al.: Dipole moment of water from Stark measurements of H2O, HDO, and D2O. J. Chem. Phys. 59, 2254 (1973)

    Article  Google Scholar 

  • Congreve, M. et al.: Recent developments in fragment-based drug discovery. J. Med. Chem. 52, 3661 (2008)

    Article  Google Scholar 

  • Cooper, D.L. (ed.): Valence Bond Theory. Elsevier, Amsterdam (2002)

    Google Scholar 

  • Corey, E.J.: The logic of chemical synthesis: Multistep synthesis of complex carbogenic molecules. Angew. Chem. Int. Ed. Engl. 30, 455 (1991)

    Article  Google Scholar 

  • Cowan, C.L. Jr. et al.: Detection of the free neutrino: a confirmation. Science 124, 103 (1956)

    Article  Google Scholar 

  • Crum Brown, A.: On an application of mathematics to chemistry. Trans. R. Soc. Edin. 24, 691 (1867)

    Google Scholar 

  • Crum Brown, A.: Presidential address of the chemistry section. In: Report of the Forty-Fourth Meeting of the British Association for the Advancement of Science, held at Belfast in August 1874, pp. 45–50. John Murray, London (1875)

  • Cuddell, J.R. et al. [COMPETE Collaboration]: Hadronic scattering amplitudes: medium-energy constraints on asymptotic behavior. Phys. Rev. D 65, 074024 (2002)

    Google Scholar 

  • Curceanu, C. et al.: Experimental tests of quantum mechanics: Pauli exclusion principle violation (the VIP experiment) and future perspectives. Physics Procedia 17, 40 (2011)

    Article  Google Scholar 

  • Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Natl. Acad. Sci. USA 38, 235 (1952)

    Article  Google Scholar 

  • Daudel, R.: Altérations des périodes radioactives sous l’influence des méthodes chimiques. Rev. Sci. Paris 85, 162 (1947)

    Google Scholar 

  • DeGrand, T. et al.: Masses and other parameters of the light hadrons. Phys. Rev. D 12, 2060 (1975)

    Article  Google Scholar 

  • Dempster, A.J.: A new method of positive ray analysis. Phys. Rev. 9, 316 (1918)

    Article  Google Scholar 

  • Denbigh, K.G.: The polarizabilities of bonds. I, Trans. Faraday Soc. 36, 936 (1940)

    Article  Google Scholar 

  • de Vries, R.Y., Briels, W.J., Feil, D.: Critical analysis of non-nuclear electron-density maxima and the maximum entropy method. Phys. Rev. Lett. 77, 1719 (1996)

    Article  Google Scholar 

  • DeTar, C.E., Donoghue, J.F.: Bag models of hadrons. Ann. Rev. Nucl. Part. Sci. 33, 235 (1983)

    Article  Google Scholar 

  • DeVoe, H.: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys. 41, 393 (1964)

    Article  Google Scholar 

  • DeVoe, H.: Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J. Chem. Phys. 43, 3199 (1965)

    Article  Google Scholar 

  • Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)

    Article  Google Scholar 

  • Dill, J.A.: Additivity principles in biochemistry. J. Biol. Chem. 272, 701 (1997)

    Google Scholar 

  • Dingley, A.J., Cordier, F., Grzesiek, S.: An introduction to hydrogen bond scalar couplings. Concepts Mag. Reson. 13, 103 (2001) et passim

  • Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714 (1929)

    Article  Google Scholar 

  • Duck, I., Sudarshan, E.C.G.: Pauli and the Spin-Statistics Theorem. WSP, River Edge, NJ (1997)

    Google Scholar 

  • Duck, I., Sudarshan, E.C.G.: Toward an understanding of the spin-statistics theorem. Am. J. Phys. 66, 284 (1998)

    Article  Google Scholar 

  • Dür, W., Cirac, J.I., Horodecki, P.: Nonadditivity of quantum capacity for multiparty communication channels. Phys. Rev. Lett. 93, 020503 (2004)

    Article  Google Scholar 

  • Earley, Sr., J.E. (ed.): Chemical explanation: Characteristics, development, autonomy. New York Academy of Sciences, New York (2003)

  • Ebeling, W.: Statistische Thermodynamik der gebundenen Zustände in Plasmen. Ann. Phys. 474, 104 (1967)

    Article  Google Scholar 

  • Edmiston, C., Ruedenberg, K.: Localized atomic and molecular orbitals. Rev. Mod. Phys. 35, 457 (1963)

    Article  Google Scholar 

  • Efimov, V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)

    Article  Google Scholar 

  • Efimov, V.: Weakly-bound states of three resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  • Efimov, V.: Energy levels of three resonantly-interacting particles. Nucl. Phys. A 210, 157 (1973)

    Article  Google Scholar 

  • Einstein, A., Infeld, L.: The Evolution of Physics, p. 312. Cambridge University Press, New York (1938)

    Google Scholar 

  • Eldredge, N., Gould, S.J.: Punctuated equilibria: An alternative to phyletic gradualism. In: Schopf, T.J.M. (ed.) Models in Paleobiology, pp. 82–115. Freeman Cooper & Co., San Francisco (1972)

    Google Scholar 

  • Elliott, J.P.: The shell model today. Nucl. Phys. A 507, 15 (1990)

    Article  Google Scholar 

  • Ellison, F.O.: A method of diatomics in molecules. I. General theory and application to H2O. J. Am. Chem. Soc. 85, 3540 (1963)

    Article  Google Scholar 

  • Emery, G.T.: Perturbation of nuclear decay rates. Ann. Rev. Nucl. Sci. 22, 165 (1972)

    Article  Google Scholar 

  • Fedak, W.A., Prentis, J.J.: The 1925 Born and Jordan paper "On quantum mechanics". Am. J. Phys. 77, 128 (2009) et passim

    Google Scholar 

  • Feigenbaum, J.A., Freund, P.G.O., Pigli, M.: High energy hadronic total cross sections. Phys. Rev. D 56, 2596 (1997)

    Google Scholar 

  • Fisher, M.E.: Condensed matter physics: does quantum mechanics matter? In: Feshbach, H., Matsui, T., Oleson, A. (eds.) Niels Bohr, Physics and the World, pp. 65–115. Harwood Academic Publishers, Chur, CH (1988)

    Google Scholar 

  • Fitch, W.L., Sauter, A.D.: Calculation of relative electron impact total ionization cross sections for organic molecules. Anal. Chem. 55, 832 (1983)

    Article  Google Scholar 

  • Foster, K.R., Huber, P.W.: Judging Science, Scientific Knowledge and the Federal Courts. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  • Fowler, R.H.: A report on homopolar valency and its quantum mechanical interpretation. In: Chemistry at the Centenary (1931) Meeting of the British Association for the Advancement of Science, pp. 226–246. W. Heffter & Sons, Ltd., Cambridge, UK (1932)

  • Freund, P.G.O.: Relation between πppp, and \(\overline{p} p\) scattering at high energies. Phys. Rev. Lett. 15:929 (1965)

    Google Scholar 

  • Fröhlich, H.: A solution of the Schrödinger equation by a perturbation of the boundary conditions. Phys. Rev. 54, 945 (1938)

    Article  Google Scholar 

  • Gaskell, D. et al. [JLab Collaboration]: New measurements of the EMC effect in light nuclei and at large x. Presented at the sixth international conference on perspectives in hadronic physics, May 2008. AIP Conf. Proc. 1056, 148 (2008)

  • Geesaman, D.F., Saito, K., Thomas, A.W.: The nuclear EMC effect, Ann. Rev. Nucl. Part. Sci. 45, 337 (1995) et passim

    Google Scholar 

  • Ghose, P.: First-order formalism for scalar fields and the MIT bag model. Phys. Rev. D 16, 1974 (1977)

    Article  Google Scholar 

  • Gomez, J. et al.: Measurement of the A dependence of deep-inelastic electron scattering. Phys. Rev. D 49, 4348 (1994)

    Article  Google Scholar 

  • Grattan-Guinness, I.: Solving Wigner’s mystery: the reasonable (though perhaps limited) effectiveness of mathematics in the natural sciences. Math. Intell. 30, 7 (2008)

    Article  Google Scholar 

  • Greensite, J.: An Introduction to the Confinement Problem. Springer, Berlin (2011)

    Book  Google Scholar 

  • Gu, J., Xie, Y., Schaefer, H.F. III: Near 0 eV electrons attach to nucleotides. J. Am. Chem. Soc. 128, 1250 (2006)

    Article  Google Scholar 

  • Guo, J.-H. et al.: X-ray emission spectroscopy of hydrogen bonding and electronic structure of liquid water. Phys. Rev. Lett. 89, 137402 (2002)

    Article  Google Scholar 

  • Gupta, S. et al.: Scale for the phase diagram of quantum chromodynamics. Science 332, 1525 (2011)

    Article  Google Scholar 

  • Hamming, R.W.: The unreasonable effectiveness of mathematics. Am. Math. Monthly 87, 81 (1980)

    Article  Google Scholar 

  • Hartmann, S., Hoefer, C., Bovens, L. (eds.): Nancy Cartwright’s Philosophy of Science. Routledge, New York (2008)

    Google Scholar 

  • Hasenfratz, P., Kuti, J.: The quark bag mode. Phys. Rept. 40, 75 (1978)

    Article  Google Scholar 

  • Hashimoto, K., Yoda, N., Iwata, S.: Theoretical study of hydrated Be2+ ions. Chem. Phys. 116, 193 (1987)

    Article  Google Scholar 

  • Heisenberg, W.: Quantum theory and its interpretation. In: Rozental, S. (ed.) Niels Bohr: His Life and Work As Seen by His Friends and Colleagues, pp. 94–108. North-Holland, Amsterdam (1967)

    Google Scholar 

  • Heisenberg, W.: Contribution to discussion on the structure of simple molecules. In: Chemistry at the Centenary (1931) Meeting of the British Association for the Advancement of Science, pp. 247–248. W. Heffter & Sons, Ltd., Cambridge, UK (1932)

  • Heitler, W., Rumer, G.: Quantentheorie der chemischen Bindung für mehratomige Moleküle. Z. Physik 68, 12 (1931)

    Article  Google Scholar 

  • Hinshelwood, C.N.: The more recent work on the reaction between hydrogen and oxygen. Proc. R. Soc. Lond. A 188, 1 (1946)

    Article  Google Scholar 

  • Hirai, M. et al.: Clustering aspects in nuclear structure functions. Phys. Rev. C 83, 035202 (2011)

    Article  Google Scholar 

  • Hoffmann, R.: Under the surface of the chemical article, Angew. Chem. Int. Ed. Engl. 27, 1593 (1988)

    Article  Google Scholar 

  • Hoffmann, R., Minkin, V.L., Carpenter, B.K.: Ockham’s razor and chemistry. HYLE—Int. J. Phil. Chem. 3, 3 (1997)

    Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964)

    Article  Google Scholar 

  • Hollett, J.W., McKemmish, L.K., Gill, P.M.W.: The nature of electron correlation in a dissociating bond. J. Chem. Phys. 134, 224103 (2011)

    Article  Google Scholar 

  • Horodecki, R. et al.: Quantum entanglement. Rev. Mod. Phys. 81, 856 (2009)

    Article  Google Scholar 

  • Huang, J., Fan, X.: Why QSAR fails. An empirical evaluation using conventional computational approach. Mol. Pharmaceutics 8, 600 (2011)

    Article  Google Scholar 

  • Hund, F.: Early history of the quantum mechanical treatment of the chemical bond. Angew. Chem. Int. Ed. Engl. 16, 87 (1977)

    Article  Google Scholar 

  • Hunt, K.L.C.: The energy as a functional of the charge density and the charge-density susceptibility: a simple, exact, nonlocal expression for the electronic energy of a molecule. J. Chem. Phys. 116, 5440 (2002)

    Article  Google Scholar 

  • Hurley, A.C.: On the method of atoms in molecules. Proc. Phys. Soc. A 68, 149 (1955)

    Article  Google Scholar 

  • Hurley, A.C.: On the method of atoms in molecules. II: an intra-atomic correlation correction. Proc. Phys. Soc. A 69, 49 (1956)

    Article  Google Scholar 

  • Hurley, A.C.: Role of atomic valence states in molecular energy calculations. J. Chem. Phys. 28, 532 (1958)

    Article  Google Scholar 

  • Hurley, A.C.: Elimination of atomic errors from molecular calculations. Rev. Mod. Phys. 35, 448 (1963)

    Article  Google Scholar 

  • Irving, J.H., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817 (1950)

    Article  Google Scholar 

  • Isaacs, E.D. et al.: Covalency of the hydrogen bond in ice: a direct X-ray measurement. Phys. Rev. Lett. 82, 4445 (1999)

    Article  Google Scholar 

  • Isaacs, E.D. et al.: Compton scattering evidence for covalency of the hydrogen bond in ice. J. Phys. Chem. Solids 61, 403 (2000)

    Article  Google Scholar 

  • Iversen, B.B. et al.: Experimental evidence for the existence of non-nuclear maxima in the electron-density distribution of metallic beryllium. A comparative study of the maximum entropy method and the multipole refinement method. Acta Cryst. B 51, 580 (1995)

    Article  Google Scholar 

  • Iversen, B.B., Jensen, J.L., Danielsen, J.: Errors in maximum-entropy charge-density distributions obtained from diffraction data. Acta Cryst. A 53, 376 (1997)

    Article  Google Scholar 

  • Jayatilaka, D.: Wave function for beryllium from X-ray diffraction data. Phys. Rev. Lett. 80, 798 (1998)

    Article  Google Scholar 

  • Jayatilaka, D., Dittrich, B.: X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Acta Cryst. A 64, 383 (2008)

    Article  Google Scholar 

  • Jaynes, E.T.: Probability Theory, The Logic of Science. In: Bretthorst G.L. (ed.) Cambridge University Press, Cambridge, UK (2003)

  • Jeffrey, G.A., Parry, G.S., Mozzi, R.L.: Study of the Wurtzite-type binary compounds. I. Structures of aluminum nitride and beryllium oxide. J. Chem. Phys. 25, 1024 (1956)

    Article  Google Scholar 

  • Jiang, Y., Sun, J., Wan, L.: Geometric shielding effects of electron scattering from polyatomic molecules. Phys. Lett. A 237, 53 (1997)

    Article  Google Scholar 

  • Johlige, H.W., Aumann, D.C., Born, H.-J.: Determination of the relative electron density at the Be nucleus in different chemical combinations, measured as changes in the electron-capture half-life of 7Be. Phys. Rev. C 2, 1616 (1970)

    Article  Google Scholar 

  • Johnson, S.R.: The trouble with QSAR (or How I learned to stop worrying and embrace fallacy). J. Chem. Inf. Model. 48, 25 (2008)

    Article  Google Scholar 

  • Johnson, K., Nohl, C.: A simple semiclassical model for the rotational states of mesons containing massive quarks. Phys. Rev. D 19, 291 (1979)

    Article  Google Scholar 

  • Johnson, K., Thorn, C.B.: Stringlike solutions of the bag model. Phys. Rev. D 13, 1934 (1976)

    Article  Google Scholar 

  • Johnson, K., Treiman, S.B.: Implications of SU(6) symmetry for total cross sections. Phys. Rev. Lett. 14, 189 (1965)

    Article  Google Scholar 

  • Joshipura, K.N., Patel, P.M.: Electron impact total (elastic + inelastic) cross-sections of C, N & O atoms and their simple molecules. Z. Phys. D 29, 269 (1994)

    Article  Google Scholar 

  • Kant, I.: Prolegomena to Any Future Metaphysics (G. Hatfield, Trans. & Ed.). Cambridge University Press, Cambridge, UK (2004)

    Google Scholar 

  • Kaplan, I.G.: Is the Pauli exclusive principle an independent quantum mechanical postulate? Int. J. Quantum Chem. 89, 268 (2002)

    Article  Google Scholar 

  • Karwasz, G.P., Brusa, R.S., Zecca A.: One century of experiments on electron-atom and molecule scattering: a critical review of integral cross-sections. II.—Polyatomic molecules. Riv. Nuovo Cimento 24(1): 1 (2001a)

  • Karwasz, G.P., Brusa, R.S., Zecca, A.: One century of experiments on electron-atom and molecule scattering: a critical review of integral cross-sections. III.—Hydrocarbons and halides. Riv. Nuovo Cimento 24(4), 1 (2001b)

    Google Scholar 

  • Kebarle, P.: Ion thermochemistry and solvation from gas phase ion equilibria. Ann. Rev. Phys. Chem. 28, 445 (1977)

    Article  Google Scholar 

  • King, R.A. et al.: Chemistry as a function of the fine-structure constant and the electron-proton mass ratio, Phys. Rev. A 81, 042523 (2010)

    Article  Google Scholar 

  • Kohler, R.E. Jr.: The origin of G. N. Lewis’s theory of the shared pair bond. Hist. Stud. Phys. Sci. 3, 343 (1971)

    Google Scholar 

  • Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004 (2001)

    Article  Google Scholar 

  • Kostro, L.: Albert Einstein’s hypothetism. Sci. Edu. 7, 317 (1998)

    Article  Google Scholar 

  • Kraushaar, J.J., Wilson, E.D., Bainbridge, K.T.: Comparison of the values of the disintegration constant of 7Be in Be, BeO, and BeF2. Phys. Rev. 90, 610 (1953)

    Article  Google Scholar 

  • Kutzelnigg, W.: Perspective on "quantum mechanics of many-electron systems". Theor. Chem. Acc. 103, 182 (2000)

    Article  Google Scholar 

  • Lackner, K.S., Zweig, G.: Introduction to the chemistry of fractionally charged atoms. Electronegativity Phys. Rev. D 28, 1671 (1983)

    Article  Google Scholar 

  • Landauer, R.: Wanted: a physically possible theory of physics. IEEE Spectrum 4, 105 (1967)

    Article  Google Scholar 

  • Landolt-Börnstein.: Photon and Electron Interactions with Atoms, Molecules and Ions, vol. I/17 C, (Y. Itikawa, Ed.) Springer-Verlag, Berlin and Heidelberg (2003)

  • Langmuir, I.: The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc. 41, 868 (1919)

    Article  Google Scholar 

  • Larsen, F.K., Hansen, N.K.: Diffraction study of the electron density distribution in beryllium metal. Acta Cryst. B 40, 169 (1984)

    Article  Google Scholar 

  • Latimer, R.W.M., Rodebush, W.H.: Polarity and ionization from the standpoint of the Lewis theory of valence. J. Am. Chem. Soc. 42, 1419 (1920)

    Article  Google Scholar 

  • Laughlin, R.B. et al.: The middle way. Proc. Natl. Acad. Sci. USA 97, 32 (2000)

    Article  Google Scholar 

  • Laughlin, R.B., Pines, D.: The theory of everything. Proc. Natl. Acad. Sci. USA 97, 28 (2000)

    Article  Google Scholar 

  • Lazaridis, T., Karplus, M.: Microscopic basis of macroscopic thermodynamics. In: Di Cera, E. (ed.) Thermodynamics in Biology, pp. 3–48. Oxford University Press, New York (2000)

    Google Scholar 

  • Lee, P.A., Pendry, J.B.: Theory of the extended X-ray absorption fine structure. Phys. Rev. B 11, 2795 (1975)

    Article  Google Scholar 

  • Leggett, A.J.: The Problems of Physics. Oxford University Press, New York (2006)

    Book  Google Scholar 

  • Leininger, R.F., Segrè, E., Wiegard, C.: Experiments on the effect of atomic electrons on the decay constant of 7Be II. Phys. Rev. 76, 897 (1949)

    Article  Google Scholar 

  • Lenard, P.: Über die Absorption von Kathodenstrahlen verschidener Geschwindigkeit. Ann. Phys. (Leipzig) 12, 714 (1903)

    Google Scholar 

  • Lesk, A.M.: The unreasonable effectiveness of mathematics in molecular biology. Math. Intell. 22, 28 (2000)

    Article  Google Scholar 

  • Lesk, A.M.: Compared to what? Math. Intell. 23, 4 (2001)

    Article  Google Scholar 

  • Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762 (1916)

    Article  Google Scholar 

  • Lewis, G.N.: Valence and Structure of Atoms and Molecules. Chemical Catalog, New York (1923)

    Google Scholar 

  • Lewis, G.N.: The chemical bond. J. Chem. Phys. 1, 17 (1933)

    Article  Google Scholar 

  • Libit, L., Hoffmann, R.: Toward a detailed orbital theory of substituent effects: Charge transfer, polarization, and the methyl group. J. Am. Chem. Soc. 96, 1370 (1974)

    Article  Google Scholar 

  • Liegener, C., Del Re, G.: Chemistry vs. physics: the reduction myth and the unity of science. J. Gen. Philos. Sci. 18, 165 (1987)

    Google Scholar 

  • Lipkin, H.J.: New systematics in hadron total cross section. Phys. Rev. D 11, 1827 (1975)

    Article  Google Scholar 

  • Lipkin, H.J., Scheck, F.: Quark model for forward scattering amplitudes. Phys. Rev. Lett. 16, 71 (1966)

    Article  Google Scholar 

  • Little, M.: “Better than numbers…” a gentle critique of evidence-based medicine. ANZ J. Surgery 73, 177 (2003)

    Article  Google Scholar 

  • Lorentz, H.A.: The Theory of Electrons. Columbia University Press, New York (1909)

    Google Scholar 

  • Lucha, W., Schöberl, F.F., Gromes, D.: Bound states of quarks. Phys. Rep. 200, 127 (1991)

    Article  Google Scholar 

  • Maranganti, R., Sharma, P., Wheeler, L.: Quantum notions of stress. J. Aerosp. Eng. 20, 22 (2007) et passim

    Google Scholar 

  • Maranganti, R., Sharma, P.: Revisiting quantum notions of stress. Proc. R. Soc. Lond. A 466, 2097 (2010) et passim

  • Mark, A.E., van Gunsteren, W.F.: Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J. Mol. Biol. 240, 167 (1994)

    Article  Google Scholar 

  • Marx, D., Hutter, J., Parrinello, M.: Density functional study of small aqueous Be2+ clusters. Chem. Phys. Lett. 241, 457 (1995)

    Article  Google Scholar 

  • Marx, D., Sprik, M., Parrinello, M.: Ab initio molecular dynamics of ion solvation. The case of Be2+ in water. Chem. Phys. Lett. 273, 360 (1997)

    Article  Google Scholar 

  • Mason, P.E. et al.: Be2+ hydration in concentrated aqueous solutions of BeCl2. J. Phys. Chem. B 112, 1935 (2008)

    Article  Google Scholar 

  • Mathieu, P.: New Lagrangian formalism for the bag. Phys. Rev. D 31, 2145 (1985)

    Article  Google Scholar 

  • McLaughlin, B.: The rise and fall of British emergentism. In: Beckerman, A., Flohr, H., Kim, J. (eds.) Emergence or Reduction? Essays on the Prospect of a Non-Reductive Physicalism, pp. 49–93. Walter de Gruyter, Berlin (1992)

    Chapter  Google Scholar 

  • McLellan, A.G.: Virial theorem generalized. Am. J. Phys. 42, 239 (1974)

    Article  Google Scholar 

  • Merritt, J.M., Bondybey, V.E., Heaven, M.C.: Beryllium dimer—caught in the act of bonding. Science 324, 1548 (2009)

    Article  Google Scholar 

  • Mezey, P.G.: The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96, 169 (1999a)

    Article  Google Scholar 

  • Mezey, P.G.: Holographic electron density shape theorem and its role in drug design and toxicological risk assessment. J. Chem. Inf. Comput. Sci. 39, 224 (1999b)

    Google Scholar 

  • Moffitt, W.: Atoms in molecules and crystals. Proc. R. Soc. Lond. A 210, 245 (1951)

    Article  Google Scholar 

  • Monson, P.A., Rigby, M., Steele, W.A.: Non-additive energy effects in molecular liquids. Mol. Phys. 49, 893 (1983)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. Phys. Rev. 40, 55 (1932a)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. II. General considerations. Phys. Rev. 41, 49 (1932b)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. III. Quantum theory of the double bond. Phys. Rev. 41, 751 (1932c)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. IV. Electronic states, quantum theory of the double bond. Phys. Rev. 43, 279 (1933a)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. V. Molecules RX n . J. Chem. Phys. 1, 492 (1933b)

    Article  Google Scholar 

  • Mulliken, R.S.: A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782 (1934)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. VI. On the method of molecular orbitals. J. Chem. Phys. 3, 375 (1935a)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. VII. Ammonia and water type molecules and their derivatives. J. Chem. Phys. 3, 506 (1935b)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. VIII. Ionization potentials. J. Chem. Phys. 3, 514 (1935c)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. IX. Methane, ethane, ethylene, acetylene. J. Chem. Phys. 3, 517 (1935d)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. X. Aldehydes, ketones and related molecules. J. Chem. Phys. 3, 564 (1935e)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XI. Electroaffinity, molecular orbitals and dipole moments. J. Chem. Phys. 3, 573 (1935f)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XII. Electroaffinity and molecular orbitals, polyatomic applications. J. Chem. Phys. 3, 586 (1935g)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XIII. Diborane and related molecules. J. Chem. Phys. 3, 635 (1935h)

    Article  Google Scholar 

  • Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XIV. Linear triatomic molecules, especially carbon dioxide. J. Chem. Phys. 3, 720 (1935i)

    Article  Google Scholar 

  • Mulliken, R.S.: The low electronic states of simple heteropolar diatomic molecules. I. General survey. Phys. Rev. 50, 1017 (1936a)

    Article  Google Scholar 

  • Mulliken, R.S.: The low electronic states of simple heteropolar diatomic molecules. II. Alkali metal hydrides. Phys. Rev. 50, 1028 (1936b)

    Article  Google Scholar 

  • Mulliken, R.S.: The low electronic states of simple heteropolar diatomic molecules. III. Hydrogen and univalent metal halides. Phys. Rev. 51, 310 (1937)

    Article  Google Scholar 

  • Mulliken, R.S.: The Rydberg states of molecules. Parts I–V. J. Am. Chem. Soc. 86, 3183 (1964)

    Article  Google Scholar 

  • Mulliken, R.S.: The Rydberg states of molecules. VI. Potential curves and dissociation behavior of (Rydberg and other) diatomic states. J. Am. Chem. Soc. 88, 1849 (1966)

    Article  Google Scholar 

  • Murdoch, A.I.: A critique of atomistic definitions of the stress tensor. J. Elast. 88, 113 (2007)

    Article  Google Scholar 

  • Murdoch, A.I.: On molecular modelling and continuum concepts. J. Elast. 100, 33 (2010) et passim

    Google Scholar 

  • Myhrer, F., Thomas, A.W.: Understanding the proton’s spin structure. J. Phys. G 37, 023101 (2010)

    Article  Google Scholar 

  • Neuefeind, J. et al.: Experimental determination of the electron density of liquid H2O and D2O, J. Phys.: Condens. Matter 14, L429 (2002) et passim

  • Ninham, B.W.: On progress in forces since the DLVO theory. Adv. Colloid Interface Sci. 83, 1 (1999)

    Article  Google Scholar 

  • Noll, W.: Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. J. Rat. Mech. Anal. 4, 627 (1955)

    Google Scholar 

  • Noll, W.: There is an English translation in R.B. Lehoucq and A. Von Lilienfeld-Toal, Translation of Walter Noll’s “Derivation of the fundamental equations of continuum thermodynamics from statistical mechanics”. J. Elast. 100, 5 (2010)

    Article  Google Scholar 

  • Norton, P.R.: The EMC effect. Rep. Prog. Phys. 66, 1253 (2003) et passim

    Google Scholar 

  • Nugent, K.W. et al.: A precise low-temperature crystal structure of BeCp2. Aust. J. Chem. 37, 1601 (1984)

    Article  Google Scholar 

  • Nye, M.J.: From Chemical Philosophy to Theoretical Chemistry, Dynamics of Matter and Dynamics of Discipline 1800–1950. University of California Press, Berkeley and Los Angeles (1993)

  • Nye, M.J.: A place in history: Was Linus Pauling a revolutionary chemist? Bull. Hist. Chem. 25, 73 (2000)

    Google Scholar 

  • Nye, M.J.: Philosopher-scientists at the interface of physics and chemistry: Paneth and Polanyi on chemistry as an exact science. In: Bertomeu-Sánchez, J.R., Burns, D.T., Van Tiggelen, B. (eds.) Proceedings of 6th International Conference on Histogram Chemistry. Mémosciences, Louvain-la-Neuve, Belgium, pp. 1630–172 (2008)

  • Odagaki, Y., Dasgupta, S., Fuxe, K.: Additivity and non-additivity between dopamine-, norepinephrine-, carbachol- and GABA-stimulated GTPase activity. Eur. J. Pharm. 291, 245 (1995)

    Article  Google Scholar 

  • Ohtsuki, T., Hirose, K., Ohno, K.: Electron-capture decay rate of 7Be encapsulated in C60 cages, J. Nucl. Radiochem. Sci. 8, A1 (2007)

    Google Scholar 

  • Pais, A.: Max Born’s statistical interpretation of quantum mechanics. Science 218, 1193 (1982)

    Article  Google Scholar 

  • Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Clarendon Press, Oxford (1989)

    Google Scholar 

  • Patel, P.M., Joshipura, K.N.: Differential and integral cross-sections of e − O2, O3, NO, CO scattering at energies 100–1000 eV. Pramana. J. Phys. 61, 685 (2003)

    Article  Google Scholar 

  • Patkowski, K., S̃pirko, V., Szalewicz, K.: On the elusive twelfth vibrational state of beryllium dimer. Science 326, 1382 (2009)

    Article  Google Scholar 

  • Pauli, W.: Über den Einfluß der Geschwindigkeitsabhängigkoit der Elektronenmasse auf den Zeemaneffekt. Z. Phys. 31, 373 (1925a)

    Article  Google Scholar 

  • Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765 (1925b)

    Article  Google Scholar 

  • Pauli, W.: Remarks on the history of the exclusion principle. Science 103, 213 (1946)

    Article  Google Scholar 

  • Pauling, L.: The shared-electron chemical bond. Proc. Natl. Acad. Sci. USA 14, 359 (1928)

    Article  Google Scholar 

  • Pauling, L.: The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367 (1931)

    Google Scholar 

  • Pauling, L.: The nature of the chemical bond. III. The transition from one extreme bond type to another. J. Am. Chem. Soc. 54, 988 (1932a)

    Article  Google Scholar 

  • Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570 (1932b)

    Article  Google Scholar 

  • Pauling, L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680 (1935)

    Article  Google Scholar 

  • Pauling, L.: Quantum theory and chemistry. In: Frank, W. (ed.) Max Planck Festschrift, pp. 385–388. Deutscher Verlag der Wissenschaften, Berlin (1959)

    Google Scholar 

  • Pauling, L.: The Nature of the Chemical Bond and the Structure of Molecules and Crystals, An Introduction to Modern Structural Chemistry, 3rd ed. Cornell University Press, Ithaca (1960)

    Google Scholar 

  • Pauling, L., Sherman, J.: The structure of the carboxyl group. II. The crystal structure of basic beryllium acetate. Proc. Natl. Acad. Sci. USA 20, 340 (1934)

    Article  Google Scholar 

  • Pauling, L., Wilson, E.B. Jr.: Introduction to Quantum Mechanics, With Applications to Chemistry. McGraw-Hill, New York (1935)

    Google Scholar 

  • Pauling, L., Yost, D.M.: The additivity of the energies of normal covalent bonds. Proc. Natl. Acad. Sci. USA 18, 414 (1932)

    Article  Google Scholar 

  • Peak, D. et al.: Evidence for complex, collective dynamics and emergent, distributed computation in plants. Proc. Natl. Acad. Sci. USA 101, 918 (2004)

    Article  Google Scholar 

  • Perl, M.L., Lee, E.R., Loomba, D.: Searches for fractionally charged particles. Ann. Rev. Nucl. Part. Sci. 59, 47 (2009)

    Article  Google Scholar 

  • Peters, N.: Flame calculations with reduced mechanisms—an outline. Lect. Notes Phys. m 15, 3 (1993)

    Article  Google Scholar 

  • Phillips, P.C.: Dielectric definition of electronegativity. Phys. Rev. Lett. 20, 550 (1968)

    Article  Google Scholar 

  • Pittet, P.-A. et al.: Tetrasolventoberyllium(II): High-pressure evidence for a sterically controlled solvent-exchange-mechanism crossover. Inorg. Chem. 29, 1936 (1990)

    Article  Google Scholar 

  • Pitzer, K.S.: Intermolecular and intramolecular forces and molecular polarizability. Adv. Chem. Phys. 2, 59 (1959)

    Article  Google Scholar 

  • Platts, J.A. et al.: First experimental characterization of a non-nuclear attractor in a dimeric magnesium(I) compound. J. Phys. Chem. A 115, 194 (2011)

    Article  Google Scholar 

  • Podgornik, R., French, R.H., Parsegian, V.A.: Nonadditivity in van der Waals interactions within multilayers. J. Chem. Phys. 124, 044709 (2006)

    Article  Google Scholar 

  • Polanyi, M.: Life’s irreducible structure. Science 160, 1308 (1968)

    Article  Google Scholar 

  • Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145 (1937)

    Article  Google Scholar 

  • Pólya, G., Read, R.C.: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds. Springer, New York (1987)

    Book  Google Scholar 

  • Preuss, W.: Calculation of adiabatic energy surfaces for molecules using the method of atomic associations. Rev. Mod. Phys. 35, 646 (1963)

    Article  Google Scholar 

  • Primas, H.: Chemistry, Quantum Mechanics, and Reductionism, 2nd ed. Springer, New York (1983)

    Book  Google Scholar 

  • Primas, H.: Can we reduce chemistry to physics? In: Radnitzky, G. (ed.) Centripetal Forces in the Sciences, vol. 2, pp. 119–133. Paragon House Publishers, New York (1988)

    Google Scholar 

  • Primas, H.: Emergence in exact natural sciences. Acta Polytech. Scand. Ma 91, 83 (1998)

    Google Scholar 

  • Probst, M.M., Spohr, E., Heinzinger, K.: On the hydration of the beryllium ion. Chem. Phys. Lett. 161, 405 (1989)

    Article  Google Scholar 

  • Probst, M.M., Spohr, E., Heinzinger, K.: A molecular dynamics simulation of an aqueous beryllium chloride solution. Mol. Sim. 7, 43 (1991)

    Article  Google Scholar 

  • Quigg, C., Rosner, J.L.: Quantum mechanics with applications to quarkonium. Phys. Rep. 56, 167 (1979)

    Article  Google Scholar 

  • Quinkert, G. et al.: Chemistry and biology—historical and philosophical aspects. In: Schreiber, S.L., Kapoor, T.M., Wess, G. (eds.) Chemical Biology, From Small Molecules to System Biology and Drug Design, pp. 3–67. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  • Raj, D.: A note on the use of the additivity rule for electron—molecule elastic scattering. Phys. Lett. A 160, 571 (1991)

    Article  Google Scholar 

  • Raj, D.: Total cross sections for positron scattering by molecules. Phys. Lett. A 174, 304 (1993)

    Article  Google Scholar 

  • Ray, S.G., Daube, S.S., Naaman, R.: On the capturing of low-energy electrons by DNA. Proc. Natl. Acad. Sci. USA 102, 15 (2005)

    Article  Google Scholar 

  • Rayón, V.M., Frenking, G.: Structures, bond energies, heats of formation, and quantitative bonding analysis of main-group metallocenes E(Cp)2. (E=Be–Ba, Zn, Si–Pb) and E(Cp). (E=Li–Cs, B–Tl). Chem. Eur. J. 8, 4693 (2002)

    Article  Google Scholar 

  • Riess, J., Münch, W.: The theorem of Hohenberg and Kohn for subdomains of a quantum system. Theor. Chim. Acta 58, 295 (1981)

    Article  Google Scholar 

  • Rocke, A.J.: Kekulé, Butlerov, and the historiography of the theory of chemical structure. Brit. J. Hist. Sci. 14, 27 (1981)

    Article  Google Scholar 

  • Ross, M.: Evidence for nonadditivity of nucleon moments in heavy nuclei. Phys. Rev. 88 (1952)

  • Ross, J., Schreiber, I., Vlad, M.O.: Determination of Complex Reaction Mechanisms, Analysis of Chemical, Biological, and Genetic Networks. Oxford University Press, New York (2006)

    Google Scholar 

  • Rudolph, W.W. et al.: Hydration of beryllium(II) in aqueous solutions of common inorganic salts. A combined vibrational spectroscopic and ab initio molecular orbital study. Dalton Trans. 6513 (2009)

  • Russell, C.A.: The History of Valency. Leicester University Press, Leicester, UK (1971)

    Google Scholar 

  • Rutherford, E., Chadwick, J., Ellis, C.D.: Radiations from Radioactive Substances, p. 8. Cambridge University Press, London (1930)

    Google Scholar 

  • Sachs, R.G., Ross, M.: Evidence for non-additivity of nucleon moments. Phys. Rev. 84, 379 (1951)

    Article  Google Scholar 

  • Sanche, L.: Low energy electron-driven damage in biomolecules, Eur. Phys. J. D 35, 367 (2005) et passim

    Google Scholar 

  • Sarukkai, S.: Revisiting the ‘unreasonable effectiveness’ of mathematics. Curr. Sci. 88, 415 (2005)

    Google Scholar 

  • Scarani, V. et al.: Quantum cloning, Rev. Mod. Phys. 77, 1225 (2005) et passim

    Google Scholar 

  • Scerri, E.: Reduction and emergence in chemistry. Phil. Sci. 74, 920 (2007)

    Article  Google Scholar 

  • Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555 (1935)

    Article  Google Scholar 

  • Schrödinger, E.: The present situation in quantum mechanics. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  • Schummer, J.: The philosophy of chemistry. Endeavour 27, 37 (2003)

    Article  Google Scholar 

  • Schwartz, J.: The pernicious influence of mathematics on science. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Logic, Methodology and Philosophy of Science, pp. 356–360. Stanford University Press, Stanford (1962)

    Google Scholar 

  • Schwinger, J.: The theory of quantized fields. I.. Phys. Rev. 82, 914 (1951)

    Article  Google Scholar 

  • Schwinger, J.: The theory of quantized fields. II. Phys. Rev. 91, 713 (1953)

    Article  Google Scholar 

  • Schwinger, J.: Gauge invariance and mass. Phys. Rev. 128, 2425 (1962)

    Article  Google Scholar 

  • Seely, J. et al. [JLab Collaboration]: New measurements of the European Muon collaboration effect in very light nuclei. Phys. Rev. Lett. 103, 202301 (2009)

    Google Scholar 

  • Segrè, E.: Possibility of altering the decay rate of a radioactive substance. Phys. Rev. 71, 274 (1947)

    Article  Google Scholar 

  • Segrè, E., Wiegard, C.: Experiments on the effect of atomic electrons on the decay constant of 7Be. Phys. Rev. 75, 39 (1949)

    Article  Google Scholar 

  • Shaik, S., Hiberty, P.C.: A Chemist’s Guide to Valence Bond Theory. Wiley, Hoboken, NJ (2008)

    Google Scholar 

  • Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)

    Article  Google Scholar 

  • Shi, D.-H. et al.: Additivity rule for electron-molecule total cross section calculations at 50–5,000 eV: a new geometrical approach. Chin. Phys. B 17, 2103 (2008)

    Article  Google Scholar 

  • Silberstein, L.: Molecular refractivity and atomic interaction. Phil. Mag. 33, 92 (1917a)

    Google Scholar 

  • Silberstein, L.: Molecular refractivity and atomic interaction II. Phil. Mag. 33, 215 (1917b)

    Google Scholar 

  • Silberstein, L.: Dispersion and the size of molecules of hydrogen, oxygen, and nitrogen. Phil. Mag. 33, 521 (1917c)

    Google Scholar 

  • Silvestrelli, P.L., Parrinello, M.: Water molecule dipole in the gas and in the liquid phase. Phys. Rev. Lett. 82, 3308 (1999a)

    Article  Google Scholar 

  • Silvestrelli, P.L., Parrinello, M.: Structural, electronic, and bonding properties of liquid water from first principles. J. Chem. Phys. 111, 3572 (1999b)

    Article  Google Scholar 

  • Simons, J.: How very low-energy (0.1–2 eV) electrons cause DNA strand breaks. Adv. Quantum Chem. 52, 171 (2007)

    Article  Google Scholar 

  • Slater, J.C.: Directed valence in polyatomic molecules. Phys. Rev. 37, 481 (1931a)

    Article  Google Scholar 

  • Slater, J.C.: Molecular energy levels and valence bonds. Phys. Rev. 38, 1109 (1931b)

    Article  Google Scholar 

  • Smirnov, P.R., Trostin, V.N.: Structural parameters of hydration of Be2+ and Mg2+ ions in aqueous solutions of their salts. Rus. J. Gen. Chem. 78, 1643 (2008) et passim

    Google Scholar 

  • Smith, D.A. (ed.): Modeling the Hydrogen Bond: Symposium, vol. 569. American Chemical Society, Washington, DC (1994)

  • Steiner, M.: The Applicability of Mathematics as a Philosophical Problem. Harvard University Press, Cambridge, MA (1998)

    Google Scholar 

  • Stranges, A.N.: Electrons and Valence, Development of the Theory, 1900–1925. Texas A & M University Press, College Station (1982)

    Google Scholar 

  • Sun, J., Jiang, Y., Wan, L.: Total cross sections for electron scattering by molecules. Phys. Lett. A 195, 81 (1994)

    Article  Google Scholar 

  • Sutcliffe, B.T., Woolley, R.G.: Molecular structure calculations without clamping the nuclei. Phys. Chem. Chem. Phys . 7, 3664 (2005) et passim

    Google Scholar 

  • Sylvester, J.J.: On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics,—with three appendices. Am. J. Math. 1, 64 (1878)

    Article  Google Scholar 

  • Symanzik, K.: Infrared singularities and small-distance-behaviour analysis. Commun. Math. Phys. 34, 7 (1973)

    Article  Google Scholar 

  • Thoma, M.H., Nolte, E.: Limits on small violations of the Pauli exclusion principle in the primordial nucleosynthesis. Phys. Lett. B 291, 484 (1992)

    Article  Google Scholar 

  • Thomas, G.F.: On the global variance in the 1-reduced local energy matrix for closed shell fermion systems. Phys. Lett A 94, 265 (1983)

    Article  Google Scholar 

  • Thomas, G.F.: On the minimization of the global variance in the 1-reduced local-energy matrix. Int. J. Quantum Chem. 29, 867 (1986)

    Article  Google Scholar 

  • Thomas, G.F., Barber, D.H.: Stiffness in radioactive decay chains. Ann. Nucl. Energy 21, 309 (1994)

    Article  Google Scholar 

  • Thomson, J.J.: Some further applications of the method of positive rays. Phil. Mag. 23, 449 (1912)

    Google Scholar 

  • Tielrooij, K.J. et al.: Cooperativity in ion hydration. Science 328, 1006 (2010) et passim

    Google Scholar 

  • Tukey, J.W.: One degree of freedom for non-additivity, Biometrics 5, 232 (1949)

    Google Scholar 

  • Tukey, J.W.: Discussion of ‘the role of statistical graduate training’. In: Rustagi, J.S., Wolfe, D.A. (eds.) Teaching of Statistics and Statistical Consulting, pp. 379–389. Academic Press, New York (1982)

    Google Scholar 

  • Tulinsky, A., Worthington, C.R.: Basic beryllium acetate. Part II. The structure analysis. Acta Cryst. 12, 626 (1959)

    Article  Google Scholar 

  • van Brakel, J.: Philosophy of Chemistry. Leuven University Press, Leuven (2000)

    Google Scholar 

  • Van Vechten, J.A.: Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys. Rev. 182, 891 (1969a)

    Article  Google Scholar 

  • Van Vechten, J.A.: Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Phys. Rev. 187, 1007 (1969b)

    Article  Google Scholar 

  • Vitorge, P., Masella, M.: A theoretical study of [Be,(H2O) n ]2+: [BeOH,(H2O) n-1]+ and [Be(OH)2,(H2O) n-2] aggregates (n = 1–6). Incidence of the first hydration shells on the hydrolysis reactions of Be2+ and BeOH+ systems. Chem. Phys. Lett. 332, 367 (2000)

    Article  Google Scholar 

  • von Nieseen, W.: A theory of molecules in molecules. I.. J. Chem. Phys. 55, 1948 (1971)

    Article  Google Scholar 

  • von Sonntag, C.: Free-Radical-Induced DNA Damage and Its Repair. A Chemical Perspective. Springer, Berlin (2006)

    Google Scholar 

  • von Weizsäcker, C.F.: Zur Theorie der Kernmassen. Z. Phys. 96, 431 (1935)

    Article  Google Scholar 

  • Voytek, S.B., Joyce, G.F.: Niche partitioning in the coevolution of 2 distinct RNA enzymes. Proc. Natl. Acad. Sci. USA 106, 7780 (2009)

    Article  Google Scholar 

  • Weinberg, S.: Effective gauge theories. Phys. Lett. B 91, 51 (1980)

    Article  Google Scholar 

  • Weinberg, S.: The Quantum Theory of Fields, Vol. 1, Foundations. Cambridge University Press, New York (1995)

    Google Scholar 

  • Weinberg, S.: The Quantum Theory of Fields, vol. 2, Modern Applications. Cambridge University Press, New York (1996)

    Google Scholar 

  • Weinstein, H., Pauncz, R., Cohen, M.: Localized molecular orbitals. Adv. At. Mol. Phys. 7, 97 (1971)

    Article  Google Scholar 

  • Wigner, E.P.: The limits of science. Proc. Am. Phil. Soc. 94, 422 (1950)

    Google Scholar 

  • Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13, 1 (1960)

    Article  Google Scholar 

  • Wigner, E.P.: The probability of the existence of a self-reproducing unit. In: The Logic of Personal Knowledge, Essays Presented to Michael Polanyi on his Seventieth Birthday, pp. 231–238. Routledge & Kegan Paul, London (1961)

  • Wilkinson, D.H.: Future prospects in the QCD era. For how long will the shell model last? Nucl. Phys. A 507, 281 (1990)

    Article  Google Scholar 

  • Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  Google Scholar 

  • Yamaguchi, T. et al.: Molecular dynamics and X-ray diffraction study of aqueous beryllium(II) chloride solutions. Z. Naturforsch. A 41, 1175 (1986)

    Google Scholar 

  • Zecca, A. et al.: Additivity rule for electron-molecule cross section calculation: a geometrical approach. Phys. Lett. A 257, 75 (1999)

    Article  Google Scholar 

  • Zecca, A., Karwasz, G.P., Brusa, R.S.: One century of experiments on electron-atom and molecule scattering: a critical review of integral cross-sections. I.—Atoms and diatomic molecules. Riv. Nuovo Cimento 19, 1 (1996)

    Google Scholar 

  • Zewail, A.H.: Femtochemistry—Ultrafast Dynamics of the Chemical Bond. WSP, Singapore (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald F. Thomas.

Additional information

It is a pleasure to dedicate this paper to Professor Stuart M. Rothstein on the occasion of his upcoming retirement from active teaching at Brock University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, G.F. The emancipation of chemistry. Found Chem 14, 109–155 (2012). https://doi.org/10.1007/s10698-011-9118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-011-9118-9

Keywords

Navigation