Skip to main content
Log in

On organism: environment buffers and their ecological significance

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

We consider, from a physical perspective, the case where the interface between an organism and its environment becomes large enough that it acts as a buffer regulating their matter and energy exchanges. We illustrate the physiological and evolutionary role of buffers through the example of lungfish estivation. Then we ponder the relevance of buffers of this kind to the quest for a general definition of concepts like niche construction, the extended phenotype, and related ones, whose meaning is conveyed at present mostly through particular examples. Finally, we comment on the potential significance of buffers to organism—environment codetermination in the sense originally suggested by Lewontin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Brillouin L (2004) Science and information theory, 2nd edn. Dover Phoenix Editions, New York

    Google Scholar 

  • Chase JM, Leibold M (2003) Ecological niches. University of Chicago Press, Chicago, Chap. 2, 3

    Google Scholar 

  • Dawkins R (1982) The extended phenotype. Oxford University Press, Oxford

    Google Scholar 

  • De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Elton E (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Frisch U (1996) Turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Jablonka E, Lamb MJ (2006) Evolution in four dimensions. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Jones CG, Lawton J et al (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones C, Lawton J et al (1997) Positive and negative effects of organisms as physical ecosystems engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Laland KN, Odling-Smee FJ, Feldman MW (1999) Evolutionary consequences of niche construction and their implications for ecology. Proc Natl Acad Sci USA 96:10242–10247

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1970) Statistical physics. Addison-Wesley Publishing Company, London, Sect. 20, pp 57–60

  • Lenton TM (1998) Gaia and natural selection. Nature 394:439–447

    Article  Google Scholar 

  • Lewontin RC (1983) The organism as the subject and object of evolution. Scientia 118:65–82

    Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Pippard AB (1974) The elements of classical thermodynamics. Cambridge University Press, London, Chap. 7

    Google Scholar 

  • Salamon P, Hoffmann KH et al (2001) What conditions make minimum entropy production equivalent to maximum power production? J Non Equilib Thermodyn 26:73–83

    Article  Google Scholar 

  • Schrodinger E (1967) What is life? Cambridge University Press, New York

    Google Scholar 

  • Smith HW (1931) Observations on the African lung-fish, Protopterus Aethiopicus, and on evolution from water to land environments. Ecology 12(1):164–181

    Article  Google Scholar 

  • Stauffer PH (1979) A fossilized honeybee comb from late Cenozoic cave deposits at Batu Caves, Malay Peninsula. J Paleontol 53(6):1416–1421

    Google Scholar 

  • Sugimoto T (2002) Darwinian evolution does not rule out the Gaia Hypothesis. J Theor Biol 218:447–455

    Google Scholar 

  • Tolman RC, Fine PC (1948) On the irreversible production of entropy. Rev Mod Phys 20(1):51–77

    Article  Google Scholar 

  • Torres J-L (1991) Natural selection and thermodynamic optimality. Nuovo Cimento D13:177–185

    Article  Google Scholar 

  • Varricchio DJ, Martin AJ, Katsura Y (2007) First trace and body fossil evidence of a burrowing, denning dinosaur. Proc R Soc B 274:1361–1368

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Leonel Torres.

Appendix

Appendix

Here we outline the thermodynamic analysis of matter and energy fluxes among the three nested objects in Fig. 1b.

First, we assume an interface that allows such exchanges at the organism–buffer boundary, plus a rigid, impermeable interface that isolates the buffer from the environment. Under such conditions we effectively have a two-body situation like that described by Eq. 1 above, thus obtaining for the work performed during this process,

$$ \Updelta W^{{({\text{ob}})}} = - T_{{\text{b}}} \Updelta S^{{({\text{ob}})}}_{{{\text{total}}}} + (P_{{\text{o}}} - P_{{\text{b}}} )\Updelta V^{{({\text{ob}})}}_{{\text{o}}} - (T_{{\text{o}}} - T_{{\text{b}}} )\Updelta S^{{({\text{ob}})}}_{{\text{o}}} - {\sum\limits_j {{\left( {\mu _{{{\text{o}}j}} - \mu _{{{\text{b}}j}} } \right)}\Updelta M^{{({\text{ob}})}}_{{{\text{o}}j}} } } $$
(A-1)

where the subscript b denotes the buffer, and the superscript (ob) indicates that the corresponding exchanges occurred at the organism–buffer interface; \( \Updelta S^{{({\text{ob}})}}_{{{\text{total}}}} = \Updelta S^{{({\text{ob}})}}_{{\text{o}}} + \Updelta S^{{({\text{ob}})}}_{{\text{b}}}, \) where the superscript indicates that entropy was generated both at the organism and at the buffer when energy and matter transfers occurred at the organism–buffer interface.

Second, we now interchange the interfaces used in the first step, thus obtaining for the amount of work extracted from the ensuing buffer–environment exchange,

$$ \Updelta W^{{({\text{be}})}} = - T_{{\text{e}}} \Updelta S^{{({\text{be}})}}_{{{\text{total}}}} + (P_{{\text{b}}} - P_{{\text{e}}} )\Updelta V^{{({\text{be}})}}_{{\text{b}}} - (T_{{\text{b}}} - T_{{\text{e}}} )\Updelta S^{{({\text{be}})}}_{{\text{b}}} - {\sum\limits_j {{\left( {\mu _{{{\text{b}}j}} - \mu _{{{\text{e}}j}} } \right)}\Updelta M^{{({\text{be}})}}_{{{\text{b}}j}} } } $$
(A-2)

where \( \Updelta S^{{({\text{be}})}}_{{{\text{total}}}} = \Updelta S^{{({\text{be}})}}_{{\text{b}}} + \Updelta S^{{({\text{be}})}}_{{\text{e}}}; \) the (be) superscript indicates that all transfers now occur at the buffer–environment interface.

The total entropy produced in the whole process, involving simultaneous matter and energy transfers at both interfaces, is given by, \( \Updelta S^{{}}_{{{\text{total}}}} = \Updelta S^{{({\text{ob}})}}_{{{\text{total}}}} + \Updelta S^{{({\text{be}})}}_{{{\text{total}}}}. \) The total entropy generated within the buffer is thus, \( \Updelta S_{{{\text{b,total}}}} = \Updelta S^{{({\text{ob}})}}_{{\text{b}}} + \Updelta S^{{({\text{be}})}}_{{\text{b}}} , \) and the net amount of heat that flows through it during the whole exchange of matter and energy in the object–buffer–environment system is, \( \Updelta Q^{{}}_{{{\text{b,total}}}} = \Updelta Q^{{({\text{ob}})}}_{{\text{b}}} + \Updelta Q^{{({\text{be}})}}_{{\text{b}}}, \) where \( \Updelta Q^{{({\text{ob}})}}_{{\text{b}}} = T_{{\text{b}}} \Updelta S^{{({\text{ob}})}}_{{\text{b}}} \) flows at the object–buffer interface, and \( \Updelta Q^{{({\text{be}})}}_{{\text{b}}} = T_{{\text{b}}} \Updelta S^{{({\text{be}})}}_{{\text{b}}} \) flows at the buffer–environment one.

Similarly, from Eqs. A-1 and A-2 the total mechanical work performed by the buffer is, \( \Updelta W_{{{\text{total}}}} = (P_{{\text{b}}} - P_{{\text{o}}} )\Updelta V_{{\text{b}}} ^{{({\text{ob}})}} + (P_{{\text{b}}} - P_{{\text{e}}} )\Updelta V_{{\text{b}}} ^{{({\text{be}})}}, \) and the net change in buffer volume is given by, \( \Updelta V_{{\text{b}}} = \Updelta V_{{\text{b}}} ^{{({\text{ob}})}} + \Updelta V_{{\text{b}}} ^{{({\text{be}})}}. \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, JL., Trainor, L. On organism: environment buffers and their ecological significance. Biol Philos 23, 403–416 (2008). https://doi.org/10.1007/s10539-007-9107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-007-9107-5

Keywords

Navigation