Skip to main content

The Addiction Module as a Social Force

  • Chapter
  • First Online:
Viruses: Essential Agents of Life

Abstract

The study of DNA virus persistence and RNA virus evolution has defined the concepts of addiction modules and quasispecies which can respectively explain the persistence of virus information and the cooperative evolution of viral populations (including defective virus). Together, these concepts can be applied to a wide array of phenomena that emerge from stable virus colonization of host. Since viruses are naturally competent in host code but also extend that code, they are natural agents for code editing. They are also natural agents to create new host identity (self), although this typically involves cooperative populations of agents. In this chapter I outline how the combined concepts of addiction modules and quasispecies can be applied to understand a wide array of phenomena, involving cooperation, network formation, symbiosis, immunity and group identity, all of which are also examined from a virus first perspective. I trace how essentially all systems of host identity and immunity can be examined from this way and show viral involvement. I also examine the emergence of human social identity from this perspective which provides many new insights for the origin of social cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abergel C, Rudinger-Thirion J et al (2007) Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol 81(22):12406–12417

    PubMed  CAS  Google Scholar 

  • Abroi A, Gough J (2011) Are viruses a source of new protein folds for organisms? – virosphere structure space and evolution. Bioessays 33(8):626–635

    PubMed  CAS  Google Scholar 

  • Akagi K, Li J et al (2008) Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition. Genome Res 18(6):869–880

    PubMed  CAS  Google Scholar 

  • Andersson AC, Yun Z et al (2005) ERV3 and related sequences in humans: structure and RNA expression. J Virol 79(14):9270–9284

    PubMed  CAS  Google Scholar 

  • Aravind L, Dixit VM et al (2001) Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291(5507):1279–1284

    PubMed  CAS  Google Scholar 

  • Arnaud F, Caporale M et al (2007) A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog 3(11):1716–1729

    CAS  Google Scholar 

  • Asadulghani M, Ogura Y et al (2009) The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5(5):e1000408

    PubMed  Google Scholar 

  • Atencio IA, Belli B et al (1995) A model for mixed virus disease: co-infection with Moloney murine leukemia virus potentiates runting induced by polyomavirus (A2 strain) in Balb/c and NIH Swiss mice. Virology 212(2):356–366

    PubMed  CAS  Google Scholar 

  • Aziz RK, Breitbart M et al (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38(13):4207–4217

    PubMed  CAS  Google Scholar 

  • Bagasra O, Prilliman KR (2004) RNA interference: the molecular immune system. J Mol Histol 35(6):545–553

    PubMed  CAS  Google Scholar 

  • Bail O (1925) Der kolistamm 88 von Gildemeister und Herzberg. Med Klin 21:1271–1273

    Google Scholar 

  • Ball M, Carmody M et al (2009) Expression of pleiotrophin and its receptors in human placenta suggests roles in trophoblast life cycle and angiogenesis. Placenta 30(7):649–653

    PubMed  CAS  Google Scholar 

  • Bamford DH (2003) Do viruses form lineages across different domains of life? Res Microbiol 154(4):231–236

    PubMed  CAS  Google Scholar 

  • Barbulescu M, Turner G et al (2001) A HERV-K provirus in chimpanzees, bonobos and gorillas, but not humans. Curr Biol 11(10):779–783

    PubMed  CAS  Google Scholar 

  • Barrangou R, Fremaux C et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    PubMed  CAS  Google Scholar 

  • Berger A, Strub K (2011) Multiple roles of Alu-related noncoding RNAs. In: Ugarkovic´ D (ed) Long non-coding RNAs, progress in molecular and subcellular biology, vol 51. Springer, Berlin/Heidelberg/Geneva, pp 119–146

    Google Scholar 

  • Bishop AL, Baker S et al (2005) Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J Bacteriol 187(7):2469–2482

    PubMed  CAS  Google Scholar 

  • Boltner D, MacMahon C et al (2002) R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol 184(18):5158–5169

    PubMed  CAS  Google Scholar 

  • Bordet J (1925) Le problbme de l’autolyse microbienne transmissible ou du bactiriophage. Ann Inst Pasteur 39:711–763

    Google Scholar 

  • Boyd EF, Porwollik S et al (2003) Differences in gene content among Salmonella enterica serovar typhi isolates. J Clin Microbiol 41(8):3823–3828

    PubMed  CAS  Google Scholar 

  • Brunovskis P, Kung HJ (1995) Retrotransposition and herpesvirus evolution. Virus Genes 11(2–3):259–270

    PubMed  CAS  Google Scholar 

  • Brussow H (2001) Phages of dairy bacteria. Annu Rev Microbiol 55:283–303

    PubMed  CAS  Google Scholar 

  • Brussow H (2009) The not so universal tree of life or the place of viruses in the living world. Philos Trans R Soc Lond B Biol Sci 364(1527):2263–2274

    PubMed  Google Scholar 

  • Brussow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39(2):213–222

    PubMed  CAS  Google Scholar 

  • Brussow H, Canchaya C et al (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602

    PubMed  Google Scholar 

  • Burns BP, Anitori R et al (2009) Modern analogues and the early history of microbial life. Precambrian Res 173(1–4):10–18

    CAS  Google Scholar 

  • Buzdin A (2007) Human-specific endogenous retroviruses. Sci World J 7:1848–1868

    CAS  Google Scholar 

  • Buzdin A, Kovalskaya-Alexandrova E et al (2006) At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol 80(21):10752–10762

    PubMed  CAS  Google Scholar 

  • Caceres M, Thomas JW (2006) The gene of retroviral origin Syncytin 1 is specific to hominoids and is inactive in Old world monkeys. J Hered 97(2):100–106

    PubMed  CAS  Google Scholar 

  • Canchaya C, Fournous G et al (2003a) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6(4):417–424

    PubMed  CAS  Google Scholar 

  • Canchaya C, Proux C et al (2003b) Prophage genomics. Microbiol Mol Biol Rev 67(2):238–276, table of contents

    PubMed  CAS  Google Scholar 

  • Cantrell MA, Ederer MM et al (2005) MysTR: an endogenous retrovirus family in mammals that is undergoing recent amplifications to unprecedented copy numbers. J Virol 79(23):14698–14707

    PubMed  CAS  Google Scholar 

  • Casavant NC, Scott L et al (2000) The end of the LINE?: lack of recent L1 activity in a group of South American rodents. Genetics 154(4):1809–1817

    PubMed  CAS  Google Scholar 

  • Cattoglio C, Pellin D et al (2010) High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 116(25):5507–5517

    PubMed  CAS  Google Scholar 

  • Chatterjee R, Chaudhuri K et al (2008) On detection and assessment of statistical significance of Genomic Islands. BMC Genomics 9:150

    PubMed  Google Scholar 

  • Chessa B, Pereira F et al (2009) Revealing the history of sheep domestication using retrovirus integrations. Science 324(5926):532–536

    PubMed  CAS  Google Scholar 

  • Chiu YL, Greene WC (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26:317–353

    PubMed  CAS  Google Scholar 

  • Claverie JM, Abergel C (2010) Mimivirus: the emerging paradox of quasi-autonomous viruses. Trends Genet 26(10):431–437

    PubMed  CAS  Google Scholar 

  • Claverie JM, Ogata H et al (2006) Mimivirus and the emerging concept of “giant” virus. Virus Res 117(1):133–144

    PubMed  CAS  Google Scholar 

  • Claverie JM, Grzela R et al (2009) Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J Invertebr Pathol 101(3):172–180

    PubMed  CAS  Google Scholar 

  • Cohen CJ, Lock WM et al (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448(2):105–114

    PubMed  CAS  Google Scholar 

  • d′Herelle F (1921) Le bacteriophage. Masson ed., Paris. J La Nature 1:219–231. Masson & Co

    Google Scholar 

  • Delaroque N, Boland W (2008) The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses. BMC Evol Biol 8:110

    PubMed  Google Scholar 

  • Delbruck M (1945) Interference between bacterial viruses: III. The mutual exclusion effect and the depressor effect. J Bacteriol 50(2):151–170

    Google Scholar 

  • Delelis O, Carayon K et al (2008) Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 5:114

    PubMed  Google Scholar 

  • Dennehy JJ, Abedon ST et al (2007) Host density impacts relative fitness of bacteriophage Phi6 genotypes in structured habitats. Evolution 61(11):2516–2527

    PubMed  Google Scholar 

  • Desfarges S, Ciuffi A (2010) Retroviral integration site selection. Viruses-Basel 2(1):111–130

    CAS  Google Scholar 

  • d’Herelle F (1926) The bacteriophage and its behavior. Williams and Wilkins, Baltimore

    Google Scholar 

  • Dobigny G, Ozouf-Costaz C et al (2004) LINE-1 amplification accompanies explosive genome repatterning in rodents. Chromosome Res 12(8):787–793

    PubMed  CAS  Google Scholar 

  • Domingo E, Sheldon J et al (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76(2):159–216

    PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757):601–603

    PubMed  CAS  Google Scholar 

  • Dulka JG (1993) Sex pheromone systems in goldfish: comparisons to vomeronasal systems in tetrapods. Brain Behav Evol 42(4–5):265–280

    PubMed  CAS  Google Scholar 

  • Dunlap KA, Palmarini M et al (2006a) Ovine endogenous betaretroviruses (enJSRVs) and placental morphogenesis. Placenta 27(Suppl A):S135–S140

    PubMed  Google Scholar 

  • Dunlap KA, Palmarini M et al (2006b) Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci U S A 103(39):14390–14395

    PubMed  CAS  Google Scholar 

  • Dunn CA, van de Lagemaat LN et al (2005) Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: the case of primate beta3GAL-T5. Gene 364:2–12

    PubMed  CAS  Google Scholar 

  • Dupressoir A, Marceau G et al (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102(3):725–730

    PubMed  CAS  Google Scholar 

  • Dupressoir A, Vernochet C et al (2009) Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A 106(29):12127–12132

    PubMed  CAS  Google Scholar 

  • Emonet SF, de la Torre JC et al (2009) Arenavirus genetic diversity and its biological implications. Infect Genet Evol 9(4):417–429

    PubMed  CAS  Google Scholar 

  • Engelberg-Kulka H, Glaser G (1999) Addiction modules and programmed cell death and antideath in bacterial cultures. Annu Rev Microbiol 53:43–70

    PubMed  CAS  Google Scholar 

  • Evans LH, Cloyd MW (1985) Friend and Moloney murine leukemia viruses specifically recombine with different endogenous retroviral sequences to generate mink cell focus-forming viruses. Proc Natl Acad Sci U S A 82(2):459–463

    PubMed  CAS  Google Scholar 

  • Evans JP, Palmiter RD (1991) Retrotransposition of a mouse L1 element. Proc Natl Acad Sci USA 88(19):8792–8795

    PubMed  CAS  Google Scholar 

  • Evans LH, Lavignon M et al (2003) Antigenic subclasses of polytropic murine leukemia virus (MLV) isolates reflect three distinct groups of endogenous polytropic MLV-related sequences in NFS/N mice. J Virol 77(19):10327–10338

    PubMed  CAS  Google Scholar 

  • Evans LH, Lavignon M et al (2006) In vivo interactions of ecotropic and polytropic murine leukemia viruses in mixed retrovirus infections. J Virol 80(10):4748–4757

    PubMed  CAS  Google Scholar 

  • Evans LH, Alamgir AS et al (2009) Mobilization of endogenous retroviruses in mice after infection with an exogenous retrovirus. J Virol 83(6):2429–2435

    PubMed  CAS  Google Scholar 

  • Filee J, Forterre P (2005) Viral proteins functioning in organelles: a cryptic origin? Trends Microbiol 13(11):510–513

    PubMed  CAS  Google Scholar 

  • Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332(6026):231–234

    PubMed  CAS  Google Scholar 

  • Fischer MG, Allen MJ et al (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A 107(45):19508–19513

    PubMed  CAS  Google Scholar 

  • Forterre P (2005) The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie 87(9–10):793–803

    PubMed  CAS  Google Scholar 

  • Forterre P (2010) Giant viruses: conflicts in revisiting the virus concept. Intervirology 53(5):362–378

    PubMed  Google Scholar 

  • Forterre P (2011a) A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong. Res Microbiol 162(1):77–91

    PubMed  CAS  Google Scholar 

  • Forterre P (2011b) Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chim 14(4):392–399

    CAS  Google Scholar 

  • Forterre P, Prangishvili D (2009a) The origin of viruses. Res Microbiol 160(7):466–472

    PubMed  CAS  Google Scholar 

  • Forterre P, Prangishvili D (2009b) The great billion-year War between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Nat Genet Eng Nat Genome Edit 1178:65–77

    CAS  Google Scholar 

  • Gabus C, Ivanyi-Nagy R et al (2006) Characterization of a nucleocapsid-like region and of two distinct primer tRNA(Lys,2) binding sites in the endogenous retrovirus Gypsy. Nucleic Acids Res 34(20):5764–5777

    PubMed  CAS  Google Scholar 

  • Gardner MB, Chiri A et al (1979) Congenital transmission of murine leukemia virus from wild mice prone to the development of lymphoma and paralysis. J Natl Cancer Inst 62(1):63–70

    PubMed  CAS  Google Scholar 

  • Gardner MB, Rasheed S et al (1980) Akvr-1, a dominant murine leukemia virus restriction gene, is polymorphic in leukemia-prone wild mice. Proc Natl Acad Sci U S A 77(1):531–535

    PubMed  CAS  Google Scholar 

  • Gardner MB, Kozak CA et al (1991) The lake casitas wild mouse: evolving genetic resistance to retroviral disease. Trends Genet 7(1):22–27

    PubMed  CAS  Google Scholar 

  • Geraldes A, Basset P et al (2008) Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol Ecol 17(24):5349–5363

    PubMed  Google Scholar 

  • Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683

    PubMed  CAS  Google Scholar 

  • Glud RN, Ramsing NB et al (1992) Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors. J Phycol 28(1):51–60

    Google Scholar 

  • Gogvadze E, Stukacheva E et al (2009) Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions. J Virol 83(12):6098–6105

    PubMed  CAS  Google Scholar 

  • Grbic ML, Vukojevic J et al (2010) Biofilm forming cyanobacteria, algae and fungi on two historic monuments in Belgrade, Serbia. Arch of Biol Sci 62(3):625–631

    Google Scholar 

  • Guaiana G, Markova I (2006) Antipsychotic treatment improves outcome in herpes simplex encephalitis: a case report. J Neuropsychiatry Clin Neurosci 18(2):247

    PubMed  Google Scholar 

  • Haldane JBS (1947) What is life? Boni and Gaer, New York

    Google Scholar 

  • Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8(4):444–450

    PubMed  CAS  Google Scholar 

  • Harcombe WR, Bull JJ (2005) Impact of phages on two-species bacterial communities. Appl Environ Microbiol 71(9):5254–5259

    PubMed  CAS  Google Scholar 

  • Harris JR (1998) Placental endogenous retrovirus (ERV): structural, functional, and evolutionary significance. Bioessays 20(4):307–316

    PubMed  CAS  Google Scholar 

  • Harris RS, Liddament MT (2004) Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4(11):868–877

    PubMed  CAS  Google Scholar 

  • Haurwitz RE, Jinek M et al (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329(5997):1355–1358

    PubMed  CAS  Google Scholar 

  • Hazan R, Sat B et al (2001) Postsegregational killing mediated by the P1 phage “addiction module” phd-doc requires the Escherichia coli programmed cell death system mazEF. J Bacteriol 183(6):2046–2050

    PubMed  CAS  Google Scholar 

  • Heidelberg JF, Nelson WC et al (2009) Germ warfare in a microbial Mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One 4(1):e4169

    PubMed  Google Scholar 

  • Hendrix RW (2002) Bacteriophages: evolution of the majority. Theor Popul Biol 61(4):471–480

    PubMed  Google Scholar 

  • Hengel H, Koszinowski UH et al (2005) Viruses know it all: new insights into IFN networks. Trends Immunol 26(7):396–401

    PubMed  CAS  Google Scholar 

  • Hirai H, Matsubayashi K et al (2005) Chimpanzee chromosomes: retrotransposable compound repeat DNA organization (RCRO) and its influence on meiotic prophase and crossing-over. Cytogenet Genome Res 108(1–3):248–254

    PubMed  CAS  Google Scholar 

  • Holmes EC (2010a) Does hepatitis C virus really form quasispecies? Infect Genet Evol 10(4):431–432

    PubMed  Google Scholar 

  • Holmes EC (2010b) The RNA virus quasispecies: fact or fiction? J Mol Biol 400(3):271–273

    PubMed  CAS  Google Scholar 

  • Hu L (2007) Endogenous retroviral RNA expression in humans. Faculty of Medicine. Uppsala University, Uppsala, p 60.

    Google Scholar 

  • Huda A, Bowen NJ et al (2010a) Epigenetic regulation of transposable element derived human gene promoters. Gene 475(1):39–48

    Google Scholar 

  • Huda A, Marino-Ramirez L et al (2010b) Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA 1(1):2

    PubMed  Google Scholar 

  • Huh JW, Ha HS et al (2008) Placenta-restricted expression of LTR-derived NOS3. Placenta 29(7):602–608

    PubMed  CAS  Google Scholar 

  • Iizasa H, Nishikura K (2009) A new function for the RNA-editing enzyme ADAR1. Nat Immunol 10(1):16–18

    PubMed  CAS  Google Scholar 

  • Jepson JE, Reenan RA (2008) RNA editing in regulating gene expression in the brain. Biochim Biophys Acta 1779(8):459–470

    PubMed  CAS  Google Scholar 

  • Jordan IK, Rogozin IB et al (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2):68–72

    PubMed  CAS  Google Scholar 

  • Karginov FV, Hannon GJ (2010) The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 37(1):7–19

    PubMed  CAS  Google Scholar 

  • Kawahara Y, Megraw M et al (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36(16):5270–5280

    PubMed  CAS  Google Scholar 

  • Khaitovich P, Hellmann I et al (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309(5742):1850–1854

    PubMed  CAS  Google Scholar 

  • Kim HS, Takenaka O (2001) Phylogeny of SINE-R retroposons in Asian apes. Mol Cells 12(2):262–266

    PubMed  CAS  Google Scholar 

  • Kim HS, Wadekar RV et al (1999) SINE-R.C2 (A homo sapiens specific retroposon) is homologous to CDNA from postmortem brain in schizophrenia and to two loci in the Xq21.3/Yp block linked to handedness and psychosis. Am J Med Genet 88(5):560–566

    PubMed  CAS  Google Scholar 

  • Kim HS, Hyun BH et al (2000) Phylogenetic analysis of a retroposon family as represented on the human X chromosome. Genes Genet Syst 75(4):197–202

    PubMed  CAS  Google Scholar 

  • Kiss A, Mikkelsen JD (2005) Oxytocin–anatomy and functional assignments: a minireview. Endocr Regul 39(3):97–105

    PubMed  CAS  Google Scholar 

  • Klenov MS, Lavrov SA et al (2007) Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res 35(16):5430–5438

    PubMed  CAS  Google Scholar 

  • Kolodkin-Gal I, Verdiger R et al (2009) A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 4(8):e6785

    PubMed  Google Scholar 

  • Koonin EV (2006) On the origin of cells and viruses: a comparative-genomic perspective. Isr J Ecol Evolut 52(3–4):299–318

    Google Scholar 

  • Koonin EV (2011) The virus world, horizontal gene transfer vehicles and the perennial arms race. Environ Microbiol Rep 3(1):10–12

    Google Scholar 

  • Koonin EV, Senkevich TG et al (2006) The ancient virus world and evolution of cells. Biol Direct 1:29

    PubMed  Google Scholar 

  • Kotnova AP, Glukhov IA et al (2007) Evidence for recent horizontal transfer of gypsy-homologous LTR-retrotransposon gtwin into Drosophila erecta followed by its amplification with multiple aberrations. Gene 396(1):39–45

    PubMed  CAS  Google Scholar 

  • Kozak CA, O′Neill RR (1987) Diverse wild mouse origins of xenotropic, mink cell focus-forming, and two types of ecotropic proviral genes. J Virol 61(10):3082–3088

    PubMed  CAS  Google Scholar 

  • Kropinski AM, Kovalyova IV et al (2007) The genome of epsilon15, a serotype-converting, group E1 Salmonella enterica-specific bacteriophage. Virology 369(2):234–244

    PubMed  CAS  Google Scholar 

  • La Scola B, Desnues C et al (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455(7209):100–U65

    PubMed  Google Scholar 

  • Lamb DC, Lei L et al (2009) The first virally encoded cytochrome p450. J Virol 83(16):8266–8269

    PubMed  CAS  Google Scholar 

  • Lavignon M, Evans L (1996) A multistep process of leukemogenesis in Moloney murine leukemia virus-infected mice that is modulated by retroviral pseudotyping and interference. J Virol 70(6):3852–3862

    PubMed  CAS  Google Scholar 

  • Lehnherr H, Maguin E et al (1993) Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J Mol Biol 233(3):414–428

    PubMed  CAS  Google Scholar 

  • Lercher MJ, Pal C (2008) Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol Biol Evol 25(3):559–567

    PubMed  CAS  Google Scholar 

  • Lindell D, Sullivan MB et al (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci U S A 101(30):11013–11018

    PubMed  CAS  Google Scholar 

  • Llorens JV, Clark JB et al (2008) Gypsy endogenous retrovirus maintains potential infectivity in several species of Drosophilids. BMC Evol Biol 8:302

    PubMed  Google Scholar 

  • Loreto ELS, Carareto CMA et al (2008) Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 100(6):545–554

    PubMed  CAS  Google Scholar 

  • Luria SE (1950) Bacteriophage: an essay on virus reproduction. Science 111(2889):507–511

    PubMed  CAS  Google Scholar 

  • Lwoff A (1953) Lysogeny. Bacteriol Rev 17(4):269–337

    PubMed  CAS  Google Scholar 

  • Lynch VJ, Leclerc RD et al (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159

    PubMed  CAS  Google Scholar 

  • Macfarlan TS, Gifford WD et al (2011) Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev 25(6):594–607

    PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L et al (2011) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 6(1):38

    PubMed  CAS  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136(4):656–668

    PubMed  CAS  Google Scholar 

  • Malone CD, Brennecke J et al (2009) Specialized piRNA pathways Act in germline and somatic tissues of the Drosophila ovary. Cell 137(3):522–535

    PubMed  CAS  Google Scholar 

  • Mangeney M, Renard M et al (2007) Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci U S A 104(51):20534–20539

    PubMed  CAS  Google Scholar 

  • Margulis L (1971a) Origin of plant and animal cells. Am Sci 59(2):230

    PubMed  CAS  Google Scholar 

  • Margulis L (1971b) Symbiosis and evolution. Sci Am 225(2):49

    Google Scholar 

  • Margulis L (2006) The phylogenetic tree topples. Am Sci 94(3):194–194

    Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463(7280):568–571

    PubMed  CAS  Google Scholar 

  • Meints RH, Ivey RG et al (2008) Identification of two virus integration sites in the brown alga Feldmannia chromosome. J Virol 82(3):1407–1413

    PubMed  CAS  Google Scholar 

  • Mevel-Ninio M, Pelisson A et al (2007) The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics 175(4):1615–1624

    PubMed  CAS  Google Scholar 

  • Mi S, Lee X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403(6771):785–789

    PubMed  CAS  Google Scholar 

  • Miller-Kittrell M, Sparer TE (2009) Feeling manipulated: cytomegalovirus immune manipulation. Virol J 6:4

    PubMed  Google Scholar 

  • Misseri Y, Cerutti M et al (2004) Analysis of the Drosophila gypsy endogenous retrovirus envelope glycoprotein. J Gen Virol 85:3325–3331

    PubMed  CAS  Google Scholar 

  • Mitchell RS, Beitzel BF et al (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2(8):E234

    PubMed  Google Scholar 

  • Mombereau C, Kawahara Y et al (2010) Functional relevance of serotonin 2 C receptor mRNA editing in antidepressant- and anxiety-like behaviors. Neuropharmacology 59(6):468–473

    PubMed  CAS  Google Scholar 

  • Monier A, Pagarete A et al (2009) Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res 19(8):1441–1449

    PubMed  CAS  Google Scholar 

  • Monne M, Robinson AJ et al (2007) The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP. J Virol 81(7):3181–3186

    PubMed  CAS  Google Scholar 

  • Moreira D, Lopez-Garcia P (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7(4):306–311

    PubMed  CAS  Google Scholar 

  • Moriyama H (1955) The nature of viruses and the origin of life. Shonan Hygiene Institute, Tokyo

    Google Scholar 

  • Naderer M, Brust JR et al (2002) Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J Bacteriol 184(9):2411–2419

    PubMed  CAS  Google Scholar 

  • Nishikura K (2006) Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7(12):919–931

    PubMed  CAS  Google Scholar 

  • Novella IS, Duarte EA et al (1995) Exponential increases of RNA virus fitness during large population transmissions. Proc Natl Acad Sci U S A 92(13):5841–5844

    PubMed  CAS  Google Scholar 

  • Nowak MA, Tarnita CE et al (2010) Evolutionary dynamics in structured populations. Philos Trans R Soc Lond B Biol Sci 365(1537):19–30

    PubMed  Google Scholar 

  • Nozawa T, Furukawa N et al (2011) CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS One 6(5):e19543

    PubMed  CAS  Google Scholar 

  • Ogata H, Raoult D et al (2005) A new example of viral intein in mimivirus. Virol J 2:8

    PubMed  Google Scholar 

  • Ojosnegros S, Perales C et al (2011) Quasispecies as a matter of fact: viruses and beyond. Virus Res 162(1–2):203–215

    PubMed  CAS  Google Scholar 

  • Ono R, Nakamura K et al (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38(1):101–106

    PubMed  CAS  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284(5757):604–607

    PubMed  CAS  Google Scholar 

  • Patterson PH (2002) Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 12(1):115–118

    PubMed  CAS  Google Scholar 

  • Perron H, Lazarini F et al (2005) Human endogenous retrovirus (HERV)-W ENV and GAG proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J Neurovirol 11(1):23–33

    PubMed  CAS  Google Scholar 

  • Poulter R, Butler M (1998) A retrotransposon family from the pufferfish (fugu) Fugu rubripes. Gene 215(2):241–249

    PubMed  CAS  Google Scholar 

  • Prasad KM, Shirts BH et al (2007) Brain morphological changes associated with exposure to HSV1 in first-episode schizophrenia. Mol Psychiatry 12(1):105–113

    PubMed  CAS  Google Scholar 

  • Pritham EJ, Putliwala T et al (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390(1–2):3–17

    PubMed  CAS  Google Scholar 

  • Prudhomme S, Bonnaud B et al (2005) Endogenous retroviruses and animal reproduction. Cytogenet Genome Res 110(1–4):353–364

    PubMed  CAS  Google Scholar 

  • Raoult D, Audic S et al (2004) The 1.2-Megabase genome sequence of mimivirus. Science 306(5700):1344–1350

    PubMed  CAS  Google Scholar 

  • Reiss D, Zhang Y et al (2007) Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 35(14):4743–4754

    PubMed  CAS  Google Scholar 

  • Romano CM, de Melo FL et al (2007) Demographic histories of ERV-K in humans, chimpanzees and rhesus monkeys. PLoS One 2(10):e1026

    PubMed  Google Scholar 

  • Romano CM, de Carvalho-Mello IM et al (2010) Social networks shape the transmission dynamics of hepatitis C virus. PLoS One 5(6):e11170

    PubMed  Google Scholar 

  • Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nat Rev Microbiol 3(12):917–924

    PubMed  CAS  Google Scholar 

  • Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9(2):99–108

    PubMed  CAS  Google Scholar 

  • Rybakowski JK (2000) Antiviral and immunomodulatory effect of lithium. Pharmacopsychiatry 33(5):159–164

    PubMed  CAS  Google Scholar 

  • Sachs JL, Bull JJ (2005) Experimental evolution of conflict mediation between genomes. Proc Natl Acad Sci U S A 102(2):390–395

    PubMed  CAS  Google Scholar 

  • Sagan D, Margulis L (1986) Evolution means cooperation, not just competition. Scientist 1(3):10–10

    Google Scholar 

  • Salcedo T, Geraldes A et al (2007) Nucleotide variation in wild and inbred mice. Genetics 177(4):2277–2291

    PubMed  CAS  Google Scholar 

  • Salmena L, Poliseno L et al (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358

    PubMed  CAS  Google Scholar 

  • Sanville B, Dolan MA et al (2010) Adaptive evolution of Mus Apobec3 includes retroviral insertion and positive selection at two clusters of residues flanking the substrate groove. PLoS Pathog 6(7):e1000974

    PubMed  Google Scholar 

  • Sasaki T, Nishihara H et al (2008) Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci U S A 105(11):4220–4225

    PubMed  CAS  Google Scholar 

  • Schutt S, Florl AR et al (2003) DNA methylation in placentas of interspecies mouse hybrids. Genetics 165(1):223–228

    PubMed  Google Scholar 

  • Shen HM, Nakamura A et al (2006) Tissue specificity of methylation and expression of human genes coding for neuropeptides and their receptors, and of a human endogenous retrovirus K family. J Hum Genet 51(5):440–450

    PubMed  CAS  Google Scholar 

  • Sinkovics JG (2009) Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (review). Int J Oncol 35(3):441–465

    PubMed  CAS  Google Scholar 

  • Siomi MC, Sato K et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258

    PubMed  CAS  Google Scholar 

  • Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22(10):532–536

    PubMed  CAS  Google Scholar 

  • Stehelin D, Varmus HE et al (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260(5547):170–173

    PubMed  CAS  Google Scholar 

  • Strickler HD, Palefsky JM et al (2008) HPV types present in invasive cervical cancers of HIV-seropositive women. Int J Cancer 123(5):1224–1225

    PubMed  CAS  Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Stuart KD, Schnaufer A et al (2005) Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30(2):97–105

    PubMed  CAS  Google Scholar 

  • Tarlinton RE, Meers J et al (2006) Retroviral invasion of the koala genome. Nature 442(7098):79–81

    PubMed  CAS  Google Scholar 

  • Tarlinton R, Meers J et al (2008) Biology and evolution of the endogenous koala retrovirus. Cell Mol Life Sci 65(21):3413–3421

    PubMed  CAS  Google Scholar 

  • Tchenio T, Heidmann T (1991) Defective retroviruses can disperse in the human genome by intracellular transposition. J Virol 65(4):2113–2118

    PubMed  CAS  Google Scholar 

  • Thomson N, Baker S et al (2004) The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol 339(2):279–300

    PubMed  CAS  Google Scholar 

  • Torrey EF, Leweke MF et al (2006) Cytomegalovirus and schizophrenia. CNS Drugs 20(11):879–885

    PubMed  Google Scholar 

  • Tsilibaris V, Maenhaut-Michel G et al (2007) What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? J Bacteriol 189(17):6101–6108

    PubMed  CAS  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 2:1241–1243

    Google Scholar 

  • Tyson GW, Banfield JF (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10(1):200–207

    PubMed  CAS  Google Scholar 

  • Vale PF, Little TJ (2010) CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Biol Sci 277(1691):2097–2103

    PubMed  CAS  Google Scholar 

  • Van Etten JL (2011) Another really, really big virus. Viruses-Basel 3(1):32–46

    Google Scholar 

  • Varela M, Spencer TE et al (2009) Friendly viruses: the special relationship between endogenous retroviruses and their host. Ann N Y Acad Sci 1178:157–172

    PubMed  CAS  Google Scholar 

  • Velicer GJ (2005) Evolution of cooperation: the benefits of ridesharing. Heredity 95(2):116–117

    PubMed  CAS  Google Scholar 

  • Vignuzzi M, Stone JK et al (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439(7074):344–348

    PubMed  CAS  Google Scholar 

  • Villarreal LP (1997) On viruses, sex, and motherhood. J Virol 71(2):859–865

    PubMed  CAS  Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM Press, Washington, DC

    Google Scholar 

  • Villarreal LP (2006) How viruses shape the tree of life. Future Virol 1(5):587–595

    CAS  Google Scholar 

  • Villarreal LP (2007) Virus-host symbiosis mediated by persistence. Symbiosis 44(1–3):1–9

    CAS  Google Scholar 

  • Villarreal LP (2008) Origin of group identity. Springer, New York

    Google Scholar 

  • Villarreal LP (2009a) Origin of group identity: viruses, addiction, and cooperation. Springer, New York

    Google Scholar 

  • Villarreal LP (2009b) Persistence pays: how viruses promote host group survival. Curr Opin Microbiol 12(4):467–472

    PubMed  CAS  Google Scholar 

  • Villarreal LP (2009c) The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 1178:194–232

    PubMed  CAS  Google Scholar 

  • Villarreal L (2011a) Viruses and host evolution: virus-mediated self identity. In: Lopez-Larrea C (ed) Self and non-self. Landes Bioscience/Springer Science  +  Business Media, New York

    Google Scholar 

  • Villarreal LP (2011b) Viral ancestors of antiviral systems. Viruses-Basel 3:1933–1958

    CAS  Google Scholar 

  • Villarreal LP (2012) Viruses in host evolution: virus-mediated self identity. In: Lopez-Larrea C (ed) Self and nonself. Landes Bioschience/Springer  +  Business Media, New York, pp 185–217

    Google Scholar 

  • Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262(4):698–710

    PubMed  Google Scholar 

  • Volff JN, Korting C et al (2000) Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol 17(11):1673–1684

    PubMed  CAS  Google Scholar 

  • Wang HY, Chien HC et al (2007a) Rate of evolution in brain-expressed genes in humans and other primates. PLoS Biol 5(2):e13

    PubMed  Google Scholar 

  • Wang T, Zeng J et al (2007b) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104(47):18613–18618

    PubMed  CAS  Google Scholar 

  • Wang X, Kim Y et al (2010a) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147

    PubMed  Google Scholar 

  • Wang Y, Liska F et al (2010b) A novel active endogenous retrovirus family contributes to genome variability in rat inbred strains. Genome Res 20(1):19–27

    PubMed  Google Scholar 

  • Waters PD, Ruiz-Herrera A et al (2007) Sex chromosomes of basal placental mammals. Chromosoma 116(6):511–518

    PubMed  Google Scholar 

  • Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2(12):e205

    PubMed  Google Scholar 

  • Wilson DS, Kniffin KM (1999) Multilevel selection and the social transmission of behavior. Hum Nat Interdiscip Biosoc Perspect 10(3):291–310

    Google Scholar 

  • Wilson DS, Wilson EO (2007) Rethinking the theoretical foundation of sociobiology. Q Rev Biol 82(4):327–348

    PubMed  Google Scholar 

  • Witzany G (2000) Life, the communicative structure: a new philosophy of biology. G. Witzany, Norderstedt

    Google Scholar 

  • Witzany G (2006) Natural genome-editing competences of viruses. Acta Biotheor 54(4):235–253

    PubMed  Google Scholar 

  • Witzany G (2009) A perspective on natural genetic engineering and natural genome editing. Introduction. Ann N Y Acad Sci 1178:1–5

    PubMed  Google Scholar 

  • Witzany G (2011a) Natural genome editing from a biocommunicative perspective. Biosemiotics 4(3):349–368

    Google Scholar 

  • Witzany G (2011b) The agents of natural genome editing. J Mol Cell Biol 3(3):181–189

    PubMed  CAS  Google Scholar 

  • Wulff BE, Sakurai M et al (2011) Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat Rev Genet 12(2):81–85

    PubMed  CAS  Google Scholar 

  • Zhang R, Peng Y et al (2007) Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 17(5):612–617

    PubMed  CAS  Google Scholar 

  • Zhou Z, Li X et al (2010) Derivation of Escherichia coli O157:H7 from its O55:H7 precursor. PLoS One 5(1):e8700

    PubMed  Google Scholar 

  • Zou QH, Li QH et al (2010) SPC-P1: a pathogenicity-associated prophage of Salmonella paratyphi C. BMC Genomics 11:729

    PubMed  CAS  Google Scholar 

  • Zwolinska K (2006) Retroviruses-derived sequences in the human genome. Human endogenous retroviruses (HERVs). Postepy Hig Med Dosw (Online) 60:637–652

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Villarreal, L.P. (2012). The Addiction Module as a Social Force. In: Witzany, G. (eds) Viruses: Essential Agents of Life. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4899-6_6

Download citation

Publish with us

Policies and ethics