Skip to main content
Log in

Classical Systems, Standard Quantum Systems, and Mixed Quantum Systems in Hilbert Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Traditionally, there has been a clear distinction between classical systems and quantum systems, particularly in the mathematical theories used to describe them. In our recent work on macroscopic quantum systems, this distinction has become blurred, making a unified mathematical formulation desirable, so as to show up both the similarities and the fundamental differences between quantum and classical systems. This paper serves this purpose, with explicit formulations and a number of examples in the form of superconducting circuit systems. We introduce three classes of physical systems with finite degrees of freedom: classical, standard quantum, and mixed quantum, and present a unified Hilbert space treatment of all three types of system. We consider the classical/quantum divide and the relationship between standard quantum and mixed quantum systems, illustrating the latter with a derivation of a superselection rule in superconducting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. K. Wan, Can. J. Phys. 58, 976 (1980).

    Google Scholar 

  2. B. van Fraassen, Quantum Mechanics (Clarendon, Oxford, 1992).

    Google Scholar 

  3. B. Beltrametti and G. Cassinelli, The Logic of Quantum Mechanics (Addison-Wesley, Reading, MA, 1981).

    Google Scholar 

  4. G. L. Sewell, Quantum Theory of Collective Phenomena (Clarendon, Oxford, 1986), pp. 13, 33, 41.

    Google Scholar 

  5. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. I (Springer, New York, 1979), p. 60, Proposition 2.3.24.

    Google Scholar 

  6. R. Cirelli and F. Gallone, Ann. Inst. H. Poincaré 19A, 297 (1973).

    Google Scholar 

  7. R. Cirelli, F. Gallone, and B. Gubbay, J. Math. Phys. 16, 201 (1975).

    Google Scholar 

  8. N. P. Landsman, Int. J. Mod. Phys. A 6, 5349 (1991).

    Google Scholar 

  9. W. H. Zurek, Phys. Rev. D 26, 1862 (1982).

    Google Scholar 

  10. I. Percival and D. Richards, Introduction to Dynamics (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  11. L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 1991).

    Google Scholar 

  12. T. Alanson, Phys. Lett. A 163, 41 (1992).

    Google Scholar 

  13. K. Kowalski, Methods of Hilbert Spaces in the Theory of Nonlinear Dynamics (World Scientific, Singapore, 1994), pp. 23–27.

    Google Scholar 

  14. B. O. Koopman, Proc. Nat. Sci. 17, 315 (1931).

    Google Scholar 

  15. M. Read and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Fourier Analysis Self-adjointness (Academic, New York, 1975), p. 313.

    Google Scholar 

  16. A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity (Pergamon, London, 1969), p. 11.

    Google Scholar 

  17. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1950), pp. 259, 273.

    Google Scholar 

  18. J. M. Jauch, Helv. Phys. Acta 37, 293 (1964).

    Google Scholar 

  19. P. Busch, P. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer, Berlin, 1996), pp. 18, 28.

    Google Scholar 

  20. T. N. Sherry and E. C. G. Sudarshan, Phys. Rev. D 18, 4590–4589 (1978).

    Google Scholar 

  21. T. N. Sherry and E. C. G. Sudarshan, Phys. Rev. D 20, 857–868 (1979).

    Google Scholar 

  22. K. K. Wan and F. E. Harrison, Phys. Lett. A 174, 1 (1993).

    Google Scholar 

  23. K. K. Wan, R. H. Fountain, and Z. Y. Tao, J. Phys. A 28, 2375–2393 (1995).

    Google Scholar 

  24. K. K. Wan and R. H. Fountain, Found. Phys. 26, 1165–1199 (1996).

    Google Scholar 

  25. F. E. Harrison and K. K. Wan, J. Phys. A 30, 4731–4755 (1997).

    Google Scholar 

  26. K. K. Wan and R. H. Fountain, Int. J. Theor. Phys. 37, 2153–2186 (1998).

    Google Scholar 

  27. R. P. Feynman, The Feynman Lectures on Physics, Vol. III (Addison-Wesley, New York, 1965), Sect. 21-9.

    Google Scholar 

  28. R. P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972), p. 304.

    Google Scholar 

  29. J. C. Gallop, SQUIDS, The Josephson Effects and Superconducting Electronics (Hilger, Bristol, 1991).

    Google Scholar 

  30. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  31. D. R. Tilley and J. Tilley, Superfluidity and Superconductivity (Hilger, Bristol, 1990), p. 36.

    Google Scholar 

  32. N. N. Bogoliubov, Lectures on Quantum Statistics (MacDonald, London, 1970), Vol. 2, Part 2.

    Google Scholar 

  33. N. N. Bogoliubov and N. N. Bogliubov, Jr, An Introduction to Quantum Statistical Mechanics (Gordon & Breach, Lausanne, Switzerland, 1992), pp. 359–366.

    Google Scholar 

  34. G. Rickayzen, Theory of Superconductivity (Interscience, New York, 1965), p. 158.

    Google Scholar 

  35. A. S. Wightman and N. Glance, Nucl. Phys. B (Proc. Suppl.) 6, 202 (1989).

    Google Scholar 

  36. H. Primas and U. Muller-Herold, In Advances in Chemical Physics, Vol. 38, Chapt. 1-6 (1978).

  37. H. Primas, Chemistry, Quantum Mechanics and Reductionism (Springer, Berlin, 1983).

    Google Scholar 

  38. H. Grabert and M. H. Devoret, Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (Plenum, New York, 1992).

    Google Scholar 

  39. K. K. Wan and R. G. D. McLean, J. Phys. A 17, 825–836 (1984).

    Google Scholar 

  40. K. K. Wan and R. G. D. McLean, J. Phys. A 17, 837–846, 2363 (1984).

    Google Scholar 

  41. J. Dixmier, Von Neumann Algebras (North-Holland, Amsterdam, 1981), pp. 161–240.

    Google Scholar 

  42. E. Merzbacher, Quantum Mechanics, 2nd edn. (Wiley, New York, 1972), p. 542.

    Google Scholar 

  43. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. 1 (Ungar, New York, 1961), p. 82, 111.

    Google Scholar 

  44. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. 2 (Ungar, New York, 1963), pp. 103–107, 77.

    Google Scholar 

  45. E. Prugovecki, Quantum Mechanics in Hilbert Spaces (Academic, New York, 1981), p. 261, Chap. 4, Section 3.

    Google Scholar 

  46. P. Roman, Some Modern Mathematics for Physicists and Other Outsiders (Pergamon, New York, 1975), Vol. 2, p. 457.

    Google Scholar 

  47. C. W. Burrel, Measure, Integration, and Probability (McGraw–Hill, New York, 1972), pp. 93, 29.

    Google Scholar 

  48. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw–Hill, New York, 1965).

    Google Scholar 

  49. M. Guenin, J. Math. Phys. 7, 271–282 (1966).

    Google Scholar 

  50. C. Piron, Foundations of Quantum Physics (Benjamin, Reading, MA, 1976).

    Google Scholar 

  51. H. Araki, Prog. Theor. Phys. 64, 719–730 (1980).

    Google Scholar 

  52. V. Bargmann, Ann. Math. 59, 1 (1954).

    Google Scholar 

  53. F. A. Kaempffer, Concepts in Quantum Mechanics (Academic, New York, 1965), pp. 59–63, 341–346.

    Google Scholar 

  54. L. Fonda and G. C. Ghirardi, Symmetry Principles in Quantum Physics (Dekker, New York, 1970), pp. 84–89.

    Google Scholar 

  55. S. R. Corley and O. W. Greenberg, J. Math. Phys. 38, 571 (1997).

    Google Scholar 

  56. C. G. Kuper, Theory of Superconductivity (Clarendon, Oxford, 1968), pp. 213–216.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, K.K., Bradshaw, J., Trueman, C. et al. Classical Systems, Standard Quantum Systems, and Mixed Quantum Systems in Hilbert Space. Foundations of Physics 28, 1739–1783 (1998). https://doi.org/10.1023/A:1018838919685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018838919685

Keywords

Navigation