Skip to main content
Log in

Unitary state preparation, local position measurements, and spin in quantum mechanics

Foundations of Physics Aims and scope Submit manuscript

Abstract

The orthodox presentation of quantum theory often includes statements on state preparation and measurements without mentioning how these processes can be achieved. The often quoted projection postulate is regarded by many as problematical. This paper presents a systematic framework for state preparation and measurement. Within the existing Hilbert space formulation of quantum mechanics for spinless particles we show that it is possible (1)to prepare an arbitrary state and (2)to reduce all quantum measurements to local position measurements in an asymptotic way by unitary evolution processes without recourse to the projection postulate. A generalization to spin-1/2particles is also given. The theory presented provides a general mathematical and theoretical foundation for many practical schemes for state preparation and measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

References

  1. A. Z. Capri,Nonrelativistic Quantum Mechanics (Benjamin/Cummings, Menlo Park, California, 1985), p. 194. P. Roman,Advanced Quantum Theory (Addison-Wesley, Reading, Massachusetts, 1965) p. 12.

    Google Scholar 

  2. M. Cini and J.-M. Levy-Leblond, eds.,Quantum Theory without Reduction (Adam Hilger, Bristol, 1990).

    Google Scholar 

  3. E. Prugovečki,Quantum Mechanics in Hilbert Space (Academic Press, New York 1981).

    Google Scholar 

  4. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. III: Scattering Theory (Academic Press, New York, 1979).

    Google Scholar 

  5. W. O. Amrein,Non-Relativistic Quantum Dynamics (Reidel, Dordrecht, 1981), pp. 100, 110, and 127.

    Google Scholar 

  6. J. Weidmann,Linear Operators in Hilbert Space (Springer, New York, 1980), p. 267 and 337.

    Google Scholar 

  7. W. O. Amrein, J. Jauch, and K. B. Sinha,Scattering Theory in Quantum Mechanics (Benjamin, Reading, Massachusetts, 1977), p. 65.

    Google Scholar 

  8. L. I. Schiff,Quantum Mechanics, 1977 (McGraw-Hill, New York, 1968), pp. 83–88.

    Google Scholar 

  9. F. Constantinescu and E. Magyari 1971,Problems in Quantum Mechanics (Pergamon, Oxford, 1971), pp. 66–68.

    Google Scholar 

  10. M. Schechter,Operator Methods in Quantum Mechanics (North-Holland, Amsterdam, 1981), Chap. 3.

    Google Scholar 

  11. E. Kreyszig,Introductory Functional Analysis with Applications (Wiley, New York, 1978), p. 507.

    Google Scholar 

  12. R. V. Kadison and J. R. Ringrose,Fundamentals of the Theory of Operator Algebras, Vol. I (Academic Press, New York, 1983).

    Google Scholar 

  13. K. K. Wan and R. G. D. McLean,J. Phys. A: Math. Gen. 17, 825, 2363 (1984).

    Google Scholar 

  14. K. K. Wan and F. E. Harrison, “Unitary models of single detector triggering and local position measurements,”Found. Phys. 24(6) (1994).

  15. M. O. Scully, W. E. Lamb, Jr., and A. Barut,Found. Phys. 17, 575 (1987).

    Google Scholar 

  16. P. Busch and F. E. Schroeck, Jr.,Found. Phys. 19, 807 (1989).

    Google Scholar 

  17. K. K. Wan and R. G. McLean,J. Phys. A: Math. Gen. 24, L425 (1991).

    Google Scholar 

  18. M. Namiki,Found. Phys. 18, 28 (1988).

    Google Scholar 

  19. M. A. Naimark,Linear Differential Operators (Harrap, London, 1968), pp. 14–17.

    Google Scholar 

  20. L. E. Ballentine,Quantum Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1990), p. 155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, K.K., McLean, R.G. Unitary state preparation, local position measurements, and spin in quantum mechanics. Found Phys 24, 715–737 (1994). https://doi.org/10.1007/BF02054670

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02054670

Keywords

Navigation