skip to main content
article

Machine Mentality and the Nature of the Ground Relation

Authors Info & Claims
Published:01 August 2001Publication History
Skip Abstract Section

Abstract

John Searle distinguished between weak and strong artificial intelligence (AI). This essay discusses a third alternative, mild AI, according to which a machine may be capable of possessing a species of mentality. Using James Fetzer's conception of minds as semiotic systems, the possibility of what might be called ``mild AI'' receives consideration. Fetzer argues against strong AI by contending that digital machines lack the ground relationship required of semiotic systems. In this essay, the implementational nature of semiotic processes posited by Charles S. Peirce's triadic sign relation is re-examined in terms of the underlying dispositional processes and the ontological levels they would span in an inanimate machine. This suggests that, if non-human mentality can be replicated rather than merely simulated in a digital machine, the direction to pursue appears to be that of mild AI.

References

  1. Baas, N. A. (1994), 'Emergence, hierarchies, and hyperstructures', in C. G. Langton, ed., Artificial Life, Vol. III. Addison-Wesley, pp. 515-537.Google ScholarGoogle Scholar
  2. Baas, N. A. (1996), 'A framework for higher order cognition and consciousness', in S. R. Hameroff, A. W. Kaszniak and A. C. Scott, eds. Toward a science of consciousness. MIT Press, pp. 633-648.Google ScholarGoogle Scholar
  3. Chandler, D. (1995), The act of writing: a media theory approach. Aberystwyth, University of Wales.Google ScholarGoogle Scholar
  4. Cohen, B., Hardwood, W. T. and Jackson, M. I. (1986), The specification of complex system. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Copeland, B. J. (1993), Artificial intelligence, a philosophical introduction. Blackwell. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. DARPA, (1988) DARPA neural network study. AFCEA International Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dennett, D. C. (1978), Brainstorms: philosophical essays on mind and psychology. Bradford Books, Harvester Press.Google ScholarGoogle Scholar
  8. Dreyfus, G., Guyon, I., Nadal, J. P. and Personnaz, L. (1988), 'Storage and retrieval of complex sequences in neural networks', Physical Review A 38(12), pp. 6365-6372.Google ScholarGoogle ScholarCross RefCross Ref
  9. von Eckardt, B. (1993), What is cognitive science? Bradford Books, MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eco, U. (1976), A theory of semiotics. Indiana University Press.Google ScholarGoogle Scholar
  11. Emmeche, C., Koppe, S. and Stjernfelt, F. (1997), 'Explaining emergence: towards an ontology of levels', Journal for General Philosophy of Science 28, pp. 83-119.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fetzer, J. H. (1977), 'A world of dispositions', Synthese 34, pp. 397-421.Google ScholarGoogle ScholarCross RefCross Ref
  13. Fetzer, J. H. (1981), Scientific knowledge. Dordrecht, Holland: D. Reidel.Google ScholarGoogle Scholar
  14. Fetzer, J. H. (1986), 'Methodological individualisn', Synthese 68, pp. 99-128.Google ScholarGoogle Scholar
  15. Fetzer, J. H. (1990), Artificial intelligence: its scope and limits. Kluwer Academic Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fetzer, J. H. (1991), 'Primitive concepts: habits, conventions, and laws', J. H. Fetzer, D. Shatz and G. Schlesinger, eds. Definitions and Definability: Philosophical Perspectives, pp. 51-68.Google ScholarGoogle ScholarCross RefCross Ref
  17. Fetzer, J. H. (1993), Philosophy of science. Paragon House.Google ScholarGoogle Scholar
  18. Fetzer, J. H. (1996), Philosophy and cognitive science. Paragon House.Google ScholarGoogle Scholar
  19. Fetzer, J. H. (1998), 'People are not computers: (most) thought processes are not computational procedures ', Journal of Experimental & Theoretical Artificial Intelligence 10, pp. 371-391.Google ScholarGoogle ScholarCross RefCross Ref
  20. Fodor, J. A. (1990), A theory of content and other essays. MIT Press.Google ScholarGoogle Scholar
  21. Fujiwara, S., Okajima, K. and Tanaka, S. (1987), 'A Heteroassociative memory network with feedback connection', IEEE International Conference on Neural Networks, Vol. II, pp. 711-718.Google ScholarGoogle Scholar
  22. Hartshorne, C., Weiss, P. and Burks, A. (1958), Collected papers of Charles Sanders Peirce. Eds. Harvard University Press.Google ScholarGoogle Scholar
  23. Hausman, C. R. (1993), Charles S. Peirce's evolutionary philosophy. Cambridge University Press.Google ScholarGoogle Scholar
  24. Hodges, W. (1993), Model theory. Cambridge University Press.Google ScholarGoogle Scholar
  25. Hopfield, J. J. (1982), 'Neural networks and physical systems with emergent collective computational abilities', Proceedings National Academ Science USA, Biophysics 79, pp. 2554-2558.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kosko, B. (1987), 'Adaptive bi-directional associative memories', Applied Optics 26(23), pp. 4947- 4960.Google ScholarGoogle ScholarCross RefCross Ref
  27. Kuipers, B. (1986). 'Qualitative simulation', Artificial Intelligence 29, pp. 289-338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Machover, M. (1996), Set theory, logic and their limitations. Cambridge University Press.Google ScholarGoogle Scholar
  29. Mellor, D. H. (1993), 'Supervenience? No chance! Reply to Menuge', Analysis 53(4), pp. 236-239.Google ScholarGoogle ScholarCross RefCross Ref
  30. Moore. G. (1965), Moore's Law. See www.intel.com/intel/museum.Google ScholarGoogle Scholar
  31. Moravec, H. (1999) Robot: mere machine to transcendent mind. Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Morris, C. W. (1938), Foundations of the theory of signs. Chicago University Press.Google ScholarGoogle Scholar
  33. Nanopoulos, D. V. (1995), 'Theory of brain function, quantum mechanics and superstrings', CERNTH/95-128 . [email protected].Google ScholarGoogle Scholar
  34. Newell, A. and Simon, H. A. (1976), 'Computer science as empirical inquiry: Symbols and search', Communications of the ACM 3, pp. 205-211.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Newell, A. (1982), 'The knowledge level', Artificial Intelligence 18, pp. 87-127.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Norton A. (1995), 'Dynamics: an introduction', in R. F. Port and T. van Gelder, eds., Mind as Motion, MIT Press, pp. 45-68. Google ScholarGoogle Scholar
  37. Rapaport, W. J. (1998), 'How minds can be computational systems', Journal of Experimental and Theoretical AI 10, pp. 403-419.Google ScholarGoogle ScholarCross RefCross Ref
  38. Rey, G. (1997), Contemporary philosophy of mind. Blackwell.Google ScholarGoogle Scholar
  39. Savage, J. E. (1998), Models of computation. Addison-Wesley.Google ScholarGoogle Scholar
  40. Searle, J. R. (1984), Minds, brains and science: the 1984 Reith lectures. BBC publication.Google ScholarGoogle Scholar
  41. Smullyan, R. M (1994), Diagonalization and self-reference. Oxford Logic Guides, Clarendon Press. No. 27.Google ScholarGoogle Scholar
  42. Turing, A. M. (1950), 'Computing machinery and intelligence', Mind 59, pp. 422-460.Google ScholarGoogle Scholar
  43. Whobrey, D. J. R. (1999), 'Aspects of qualitative consciousness: a computer science perspective', PhD Thesis. Department of Computer Science. City University, London. Online version at: www.mildai.org.Google ScholarGoogle Scholar
  44. Wood, D. (1987), Theory of computation. Harper and Row. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access