Skip to main content
Log in

Reconstructing an Open Order from Its Closure, with Applications to Space-Time Physics and to Logic

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In his logical papers, Leo Esakia studied corresponding ordered topological spaces and order-preserving mappings. Similar spaces and mappings appear in many other application areas such the analysis of causality in space-time. It is known that under reasonable conditions, both the topology and the original order relation \({\preccurlyeq}\) can be uniquely reconstructed if we know the “interior” \({\prec}\) of the order relation. It is also known that in some cases, we can uniquely reconstruct \({\prec}\) (and hence, topology) from \({\preccurlyeq}\). In this paper, we show that, in general, under reasonable conditions, the open order \({\prec}\) (and hence, the corresponding topology) can be uniquely determined from its closure \({\preccurlyeq}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov A.D.: ‘On Lorentz transformations’. Uspekhi Math. Nauk 5(3), 187 (1950) (in Russian)

    Google Scholar 

  2. Alexandrov A.D.: ‘A contribution to chronogeometry’. Canadian Journal of Mathematics 19, 1119–1128 (1967)

    Article  Google Scholar 

  3. Alexandrov A.D.: ‘Mappings of spaces with families of cones and space-time transformations’. Annali di Matematica Pura ed Aplicata 103, 229–257 (1967)

    Article  Google Scholar 

  4. Alexandrov A.D.: ‘On the axioms of relativity theory’. Vestnik Leningrad University, Ser. Math. 19, 5–28 (1967)

    Google Scholar 

  5. Alexandrov A.D., Ovchinnikova V.V.: ‘Remarks on the foundations of special relativity’. Leningrad University Vestnik No. 11, 94–110 (1953) (in Russian)

    Google Scholar 

  6. Benz W.: ‘A characterization of plane Lorentz transformations’. Journal of Geometry 10, 45–56 (1977)

    Article  Google Scholar 

  7. Benz, W., Geometrische Transformationen, BI Wissenscahftsverlag, Mannheim 1992.

  8. Busemann, H., Timelike spaces, PWN Publishers, Warszawa, 1967.

  9. de la Mora, C., P.Wojciechowski, V. Kreinovich, S.A. Starks, P.Tanenbaum, and A. Kuzminykh, ‘Robust Methodology for Characterizing System Response to Damage: A Subjective (Fuzzy) Partial Ordered Modification of the Traditional Utility-Probability Scheme’, Proceedings of the 22nd International Conference of the North American Fuzzy Information Processing Society NAFIPS’2003, Chicago, Illinois, July 24–26, 2003, pp. 413–419.

  10. Esakia L.: ‘Topological Kripke models’. Soviet Math Dokl. 15, 147–151 (1974)

    Google Scholar 

  11. Esakia, L., Heyting Algebras I. Duality Theory, Metsniereba, Tbilisi, 1985 (in Russian).

  12. Feynman R., Leighton R., Sands M.: The Feynman Lectures on Physics. Addison Wesley, Boston, Massachusetts (2005)

    Google Scholar 

  13. Guts A.K.: ‘On mappings of families of sets’. Soviet Math, Dokl. 14, 506–508 (1973)

    Google Scholar 

  14. Guts A.K.: ‘On mappings preserving cones in a Lobachevski space’. Math. Notes 13, 411–415 (1973)

    Google Scholar 

  15. Guts A.K.: ‘Mappings of an ordered Lobachevsky space’. Soviet Math. Dok. 15, 416–419 (1974)

    Google Scholar 

  16. Guts A.K.: ‘Invariant orders on three-dimensional Lie groups’. Siberian Math. Journal 17, 731–736 (1976)

    Article  Google Scholar 

  17. Guts, A. K., ‘The chronogeometry of Gödel and de Sitter manifolds’. Siberian Math. Journal, pp. 509–513, 1980.

  18. Guts A.K.: ‘Axiomatic relativity theory’. Russian Math. Surveys 37(2), 41–89 (1982)

    Article  Google Scholar 

  19. Kelly J.L.: General Topology. Springer Verlag, Berlin, Heidelberg, New York (1995)

    Google Scholar 

  20. Klir, G., and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, Upper Saddle River, New Jersey, 1995.

  21. Kosheleva, O. M., V. Kreinovich, and P. G. Vroegindewey, ‘An extension of a theorem of A. D. Alexandrov to a class of partially ordered fields’, Proceedings of the Royal Academy of Science of Netherlands, Series A, 82(3):363–376, 1979.

    Google Scholar 

  22. Kosheleva, O. M., V. Kreinovich, H.T. Nguyen, and B. Bouchon-Meunier, ‘How to describe partially ordered preferences: mathematical foundations’, in H.P. Nguyen, and A. Ohsato (eds.), Proceedings of the Vietnam-Japan Bilateral Symposium on Fuzzy Systems and Applications VJFUZZY’98, HaLong Bay, Vietnam, 30th September–2nd October, 1998, pp. 269–278.

  23. Kreinovich V.: ‘Approximately measured causality implies the Lorentz group: Alexandrov-Zeeman result made more realistic’. International Journal of Theoretical Physics 33(8), 1733–1747 (1994)

    Article  Google Scholar 

  24. Kreinovich V.: ‘Symmetry characterization of Pimenov’s spacetime: a reformulation of causality axioms’. International Journal of Theoretical Physics 35(2), 341–346 (1996)

    Article  Google Scholar 

  25. Kreinovich V., Kosheleva O.: ‘Computational Complexity of Determining Which Statements about Causality Hold in Different Space-Time Models’. Theoretical Computer Science 405(1-2), 50–63 (2008)

    Article  Google Scholar 

  26. Kronheimer E.H., Penrose R.: ‘On the structure of causal spaces’. Proc. Cambr. Phil. Soc. 63(2), 481–501 (1967)

    Article  Google Scholar 

  27. Künzi H.-P.A., Kreinovich V.: ‘Static Space-Times Naturally Lead to Quasi- Pseudometrics’. Theoretical Computer Science 405(1-2), 64–72 (2008)

    Article  Google Scholar 

  28. Kuzminykh A.V.: ‘Characterization of Lorentz transformations’. Soviet Math. Dokl. 16(6), 1626–1628 (1975)

    Google Scholar 

  29. Kuzminykh A.V.: ‘Minimal condition determining the Lorentz transformations’. Siberian Mathematical Journal 17(6), 968–972 (1976)

    Article  Google Scholar 

  30. Lester J.A.: ‘On null cone preserving mappings’. Proceedings of Cambridge Mathematical Society 81, 455–462 (1977)

    Article  Google Scholar 

  31. Lester J.A.: ‘Cone preserving mappings for quadratic cones over arbitrary fields’. Canadian Journal of Mathematics 29, 1247–1253 (1977)

    Article  Google Scholar 

  32. . Lester J.A.: ‘A physical characterization of conformal transformations of Minkowski spacetime’. Annals of Discrete Mathematics 18, 567–574 (1983)

    Google Scholar 

  33. Luce R.D., Raifa R.: Games and decisions: introduction and critical survey. Dover, New York (1989)

    Google Scholar 

  34. Mendel, J. M., Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall, 2001.

  35. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco, 1973.

  36. Naber G.L.: The geometry of Minkowski space-time. Springer-Verlag, N.Y. (1992)

    Google Scholar 

  37. Nguyen H.T., Kosheleva O., Kreinovich V.: ‘Decision Making Beyond Arrow’s Impossibility Theorem’. International Journal of Intelligent Systems 24(1), 27–47 (2009)

    Article  Google Scholar 

  38. Nguyen, H. T., V. Kreinovich, and Q. Zuo, ‘Interval-valued degrees of belief: applications of interval computations to expert systems and intelligent control’, International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems (IJUFKS) 5(3):317–358, 1997.

    Google Scholar 

  39. Nguyen, H. T., and E. A. Walker, A First Course in Fuzzy Logic, Chapman & Hall/CRC, Boca Raton, Florida, 2006.

  40. Pambuccian V.: ‘Alexandrov-Zeeman type theorems expressed in terms of definability’. Aequationes Mathematicae 74, 249–261 (2007)

    Article  Google Scholar 

  41. Pimenov, R. I., Kinematic spaces: Mathematical Theory of Space-Time, Consultants Bureau, New York, 1970.

  42. Tanenbaum, P. J., C. de la Mora, P.Wojciechowski, O.Kosheleva, V. Kreinovich, S.A. Starks, and A. Kuzminykh, ‘Robust Methodology for Characterizing System Response to Damage: Approach Based on Partial Order’, in I. Lirkov, S. Margenov, J.Wasniewski, and P.Yalamov (eds.), Large-Scale Scientific Computing, Proceedings of the 4-th International Conference LSSC’2003, Sozopol, Bulgaria, June 4–8, 2003, Springer Lecture Notes in Computer Science, 2907:276–283, 2004.

  43. Zapata, F., O. Kosheleva, and K. Villaverde, ‘Products of Partially Ordered Sets (Posets) and Intervals in Such Products, with Potential Applications to Uncertainty Logic and Space-Time Geometry’, Abstracts of the 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics SCAN’2010, Lyon, France, September 27–30, 2010, pp. 142–144.

  44. Zapata, F., O.Kosheleva, and K. Villaverde, ‘How to Tell When a Product of Two Partially Ordered Spaces Has a Certain Property: General Results with Application to Fuzzy Logic’, Proceedings of the 30th Annual Conference of the North American Fuzzy Information Processing Society NAFIPS’2011, El Paso, Texas, March 18–20, 2011.

  45. Zeeman E.C.: ‘Causality implies the Lorentz group’. Journal of Mathematical Physics 5, 490–493 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich.

Additional information

In memoriam Leo Esakia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapata, F., Kreinovich, V. Reconstructing an Open Order from Its Closure, with Applications to Space-Time Physics and to Logic. Stud Logica 100, 419–435 (2012). https://doi.org/10.1007/s11225-012-9386-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9386-y

Keywords

Navigation