
496

Notre Dame Journal of Formal Logic
Volume 35, Number 4, Fall 1994

Elementary Functions and Loop Programs

ZLATAN DAMNJANOVIC

Abstract We study a hierarchy {Lk
2} of Kalmàr elementary functions on inte-

gers based on a classification of LOOP programs of limited complexity, namely
those in which the depth of nestings of LOOP commands does not exceed two. It
is proved that n-place functions in Lk

2 can be enumerated by a single function in
Lk+2

2 , and that the resulting hierarchy of elementary predicates (i.e., functions
with 0,1-values) is proper in that there are Lk+2

2 predicates that are not in Lk
2.

Along the way the rudimentary predicates of Smullyan are classified as L2
2.

1 We focus here on a relatively small class of computable functions, the class of el-
ementary functions, first introduced by Csillag and Kalmàr in the 1940s. (By a func-
tion is always meant a possibly partial function of nonnegative integers, mapping n-
tuples of members of N into N.) This is the smallest class of functions that includes
the successor x + 1, the projection functions Un

i (1 ≤ i ≤ n), x .− y, x + y and x · y,
and is closed under composition and bounded sums and products.1 Essentially, the
elementary functions are obtained by composition and bounded iteration of the usual
arithmetical operations of + and ·.

Elementary functions are of particular interest if we are seeking to character-
ize a “natural” example of a concept of computability narrower than the standard
Church-Turing notion. The standard notion allows arbitrarily complex computations
and places no bounds on the amount of time or storage space required to complete the
computation. For this reason many authors, most notably computer scientists, have
taken the view that the Church-Turing model is largely irrelevant from the standpoint
of actual computing practice and that the limits on the amount of time and space avail-
able must be an essential part of a realistic concept of computation. In attempting to
define a theoretically interesting concept that would meet these concerns, it is natu-
ral to follow what could best be described as a foundational “predicative” procedure:
we may think of the class of functions computable in such a preferred sense as con-
structed in stages, so that the complexity of computations of the functions at the later
stages is in some way bounded by functions obtained at the earlier stages. Ritchie [16]
thus inductively defines the class of “predictably computable” functions as follows:

Received May 17, 1993; revised November 30, 1994

ELEMENTARY FUNCTIONS 497

the functions computable by finite automata form the initial stage, and at successor
stages we introduce the functions computable by Turing machines that use in their
computations an amount of tape bounded by some function obtained at the previous
stage. (Finite automata are also described in Davis and Weyuker [8], chapter 8.)

Ritchie’s “predictably computable” functions turn out to be precisely the ele-
mentary functions.2 In fact, the class of elementary functions has the property that
the total functions belonging to the class are exactly those computable by some pro-
gram, formulated in any one of the standard programming formalisms, in time and
space bounded by a function that belongs to that very class. (See, e.g., Theorem 4.1.1
in Cutland [6].) All this suggests that the elementary functions embody an intuitively
significant conception of arithmetic that can serve as a basis for a plausibly restricted
model of computation. It is widely held among computer scientists that such a model
would be comprehensive enough to include all functions computable “in practice.”3

In §2 we introduce a programming language of Elementary LOOP Programs
(ELPs) that allows only computations of elementary functions, and in §3 state some
basic properties of such programs and of elementary functions. There we also de-
scribe a particular hierarchy, {Lk

2}, of elementary functions, originally introduced in
Goetze and Nehrlich [9], which is defined in terms of a syntactic classification of
ELPs. §4 describes a well known class of predicates—Smullyan’s rudimentary pre-
dicates—which shall serve as a basis for our own arithmetization of ELPs in §§5–6.
(Predicates are functions that take only 0 and 1 as values.) Our main results are in
§§7–8: in §7 we classify the rudimentary predicates in the hierarchy {Lk

2} by show-
ing that they all belong to the class L2

2. Then in §8 we establish enumeration theorems
for the hierarchy {Lk

2} and also prove that the hierarchy of predicates is a proper one
in a weak sense. (That the hierarchy of functions {Lk

2} is proper was established by
a different method by Goetze and Nehrlich in [9].) Although the project of carrying
out arithmetization by such extremely elementary means is of evident interest, it also
makes it possible to set up strongly constructive semantics for arithmetic along the
lines of Kleene’s recursive realizability that relies only on elementary functions (see
Damnjanovic [7]).

2 A register machine or abacus consists of a finite number of registers, each of
which may contain a finite number (possibly zero) of counters. We consider several
programming languages interpreted by reference to such computing devices. A pro-
gram consists of a finite sequence of instructions, which we may assume are labeled
by numerals. The instructions refer to registers by means of variables, distinct reg-
isters being associated with distinct variables out of an infinite list of variables. The
contents of the registers are then referred to as the values of those variables. One such
language—which we call RM, for register machines—has instructions of the follow-
ing kind:

1. “add 1 to Xi”;

2. “subtract 1 from Xi if Xi is not empty; otherwise, go to m,” where m is a label
of some instruction;

3. “GO TO m.”

The interpretation of such instructions is obvious, given that X1, X2, . . . is the list of

498 ZLATAN DAMNJANOVIC

variables. RM programs are usually represented in the form of directed graphs, or
“flow graphs,” in which the nodes correspond to instructions of type 1 and 2 and the
arrows connecting the nodes express the “GO TO” commands; this is how we shall
describe RM programs in §7. The language of RM programs is universal in that every
partial recursive function can be shown to be computable, in an appropriate sense, by
some RM program.4

Our primary focus, however, is on LOOP programs, originally introduced by
Meyer and Ritchie in [13]. We define these inductively. The instructions include:

1. Vi ← Vi + 1 meaning “add 1 to Vi”;
2. Vi ← 0 meaning “set Vi to 0”;
3. Vi ← Vj meaning “assign the value of Vj to Vi leaving Vj unchanged.”

(We list the variables as V0, V1, V2, . . . to distinguish them from the variables in RM
programs. We let Vn be the initial segment of this list up to and including Vn.) These
instructions we call arithmetical, and any finite sequence of such instructions is a
LOOP program. In addition, given a LOOP program P, the sequence of instructions,

LOOP Vi

P
END

is a loop segment, and also constitutes a LOOP program, which is interpreted as fol-
lows:

if the value of Vi is k, perform P exactly k times and then continue with the
instruction following END, if there is any.

The variable Vi may occur in P and its value may change in the course of the process.
The number of iterations of P, however, is determined by the value of Vi before the
computation begins. This completes the definition of LOOP programs.5

What is noteworthy about LOOP programs is that they provide a direct way of
expressing primitive recursion, e.g., x + y is defined by primitive recursion from x +
1. Consider the program,

(1) LOOP X
Y ← Y + 1

END

(We use X, Y, Z,U, . . . as “metalinguistic” variables for Vi.) If the initial values of X
and Y are x and y, respectively, then at the end of the computation their values will be
x and x + y, respectively. If we designate the registers X and Y as the input registers,
in that order, writing IN X,Y , and Y as the output register, writing OUT Y , we may
regard the process as the computation of x + y. Then the LOOP program,

(2) Y ← 0
LOOP Z

(1)
END

is easily seen to compute x · z if IN X, Z and OUT Y . The same idea is used to show
that xy, which is defined by primitive recursion from x · y, is also computable by a

ELEMENTARY FUNCTIONS 499

LOOP program. In fact, the functions computable by LOOP programs are precisely
the primitive recursive (p.r.) functions (cf. [13], and [8], chapter 13).

We also consider an expanded language of LOOPµ programs, which differ from
LOOP programs in that complex instructions of the form,

WHILE X �= 0 DO
P

END

are also allowed, P being some previously given LOOPµ program, possibly containing
occurrences of the variable X. This is interpreted as follows:

perform program P repeatedly until the value of X is 0; if and when that hap-
pens, continue with the instruction following END, if there is any.

If P contains X, the repeated applications of P may result in changes of the value of
X; if X never assumes value 0 in the process, the computation will never terminate.
Instructions of this type allow us to directly express the (unbounded) least number
operator µ, as in,

(µy) A (�xn, y) (3)

as long as the characteristic function of the predicate A (�xn, y) is computable by some
LOOPµ program Q in the sense that Q terminates with value 0 in the output regis-
ter Z whenever A (�xn, y) holds, and with value 1 in Z if ¬A (�xn, y), the registers
X1, . . . , Xn, Y being the input registers with initial values x1, . . . , xn, y, respectively,
and all other registers in Q initially being empty. (The variables for the other registers
are called local, to be distinguished from the input and output variables.) Then the
LOOPµ program,

Y ← 0
WHILE Z �= 0 DO

Q [IN X1, . . . , Xn, Y; OUT Z]
Y ← Y + 1

END

computes (3) if IN X1, . . . , Xn and OUT Y . The language of LOOPµ programs is uni-
versal and thus equivalent to the language of RM programs. (See [8], pp. 311–312.)

Hence the language of LOOP programs is strictly weaker than that of LOOPµ pro-
grams, since there exist recursive functions that are not p.r. Still weaker languages
are the fragments of the LOOP language in which a bound is placed on the number of
nested applications of LOOP-END commands. Program (2), for instance, has depth of
nesting two, whereas the LOOP program for xy obtained from (2) in this same fashion
would have depth of nesting three. We shall study the LOOP programs in which the
maximum depth of nesting is ≤2. It turns out that the functions computable by such
programs are precisely the elementary functions, and so we call such LOOP programs
elementary, or ELP for short.6

We follow [9] in adopting a classification of LOOP programs according to the
number of their subprograms of maximal depth of nesting. In general, given two
classes, A and B , of programs, we let AB stand for the class of programs of the form
P
Q where P ∈ A and Q ∈ B , i.e., of programs that result from composition of programs

500 ZLATAN DAMNJANOVIC

from A and B , respectively. (Program P is applied first.) And given a class A , we let
〈A〉 be the class that includes the programs in A as well as all programs of the form,

LOOP X
P

END

where P ∈ A . We let L0 be the class of LOOP programs with no LOOP commands.
Then set

L0
1 := L0 and Lk+1

1 := Lk
1(〈L0〉L0).

Let L1 := ∪k∈NLk
1 and define

L0
2 := L1 and Lk+1

2 := Lk
1(〈L1〉L1).

Then let Lk
n(k ≥ 0, n = 1, 2) denote the class of functions computable by ELPs in Lk

n.

3 Following [13], we define a series of functions fk as follows:

f0(0) := 1

f0(1) := 2

f0(x) := x + 2 for x ≥ 2

fn+1(x) := f x
n (1) where f x

n (y) := fn(fn(. . . (fn︸ ︷︷ ︸
x times

(y)) . . .)).

(Thus f 0
n (y) = y.) In particular, f1(x) = 2x and f2(x) = 2x if x ≥ 1. We summarize

some useful properties of these functions.7

Lemma 3.1

1. For any m, n, m < n ⇒ fm ◦ fn(x) ≤ fn ◦ f0(x).
2. For any m, n, m < n ⇒ for any j, k, f j

m ◦ f k
n (x) ≤ f k

n ◦ f j
0 (x).

3. For any n, f x
n (y) ≤ fn+1(x + y).

4. For any k ≥ 1, f k
2 (x) · y ≤ f k

2 ◦ f1(x + y).
5. For any k ≥ 1, [f k+1

2 (x)]y ≤ f k+1
2 ◦ f1(x + y).

6. For any k ≥ 1, f k+1
2 (x) · f k+1

2 (x) ≤ f k+1
2 ◦ f0(x).

Proof: (1) and (3) are proved in [9], Lemma 4 (a) and (b), and (2) follows from (1).
For (4), we have that

f k
2 (x) · y ≤ f2(f k−1

2 (x)) · 2y = 2 f k−1
2 (x) · 2y = 2 f k−1

2 (x)+y

= f2(f k−1
2 (x) + y) ≤ f2 ◦ f y

0 ◦ f k−1
2 (x)

≤ f2 ◦ f k−1
2 ◦ f y

0 (x) ≤ f k
2 ◦ f1(x + y).

For (5),

[f k+1
2 (x)]y = (2 f k

2 (x))y = 2 f k
2 (x)·y

= f2(f k
2 (x) · y) ≤ f2 ◦ f k

2 ◦ f1(x + y)

= f k+1
2 ◦ f1(x + y).

ELEMENTARY FUNCTIONS 501

Finally, for (6),

f k+1
2 (x) · f k+1

2 (x) = 2 f k
2 (x) · 2 f k

2 (x) = 22· f k
2 (x) = 2 f1◦ f k

2 (x) ≤ 2 f k
2 ◦ f0(x) ≤ f k+1

2 ◦ f0(x).

We shall often use these results without explicitly referring to Lemma 3.1.
Let P be an ELP. The running time of P, TP(�xn), is the total number of times

arithmetical instructions are executed during the computation of P started on a given
input �xn. Thus, e.g., if P ∈ L0 then TP(�xn) = lth(P), and all variables in P, including
the output variable, have values ≤ max(�xn) + lth(P) ≤ f lth(P)

0 (max(�xn)). (Here the
length of P, lth(P), is simply the number of instructions in P.) If P has LOOP instruc-
tions, then some arithmetical instructions may be executed more than once: e.g., if P
is of the form

LOOP X
Q

END

for some ELP Q ∈ L0. Then

TP(�xn) ≤ lth(Q) · x ≤ lth(Q) · max(�xn) ≤ 2 lth(Q) · max(�xn) = f lth(P)−2
1 (max(�xn))

where x is the initial value of the variable X. On the other hand, if VP(�xn) is the max-
imum of the values any variable in P assumes during the computation started with
input �xn, then VP(�xn) can increase at most by 1 at each step of the computation.

Hence, in general,

VP(�xn) ≤ max(�xn) + TP(�xn)

and in the above example, where P ∈ 〈L0〉, we have that,

VP(�xn) ≤ max(�xn) + f lth(P)−2
1 (max(�xn)) ≤ 2(f lth(P)−2

1 (max(�xn)))

≤ f lth(P)
1 (max(�xn)).

This type of argument can be extended to establish upper bounds on the running time
and the maximum value of the variables for any ELP. In particular, we have the fol-
lowing theorem.

Theorem 3.2 Suppose k ≥ 1 and P ∈ Lk
2. Then both TP(�xn) and VP(�xn) have an

upper bound in f k
2 ◦ f lth(P)

1 ◦ f 2 lth(P)
0 (max(�xn)).

We omit the proof, which may be obtained by filling in the details of the argument
given in [9], p. 259, Lemma 5. (See also [8], pp. 301–302, proof of Theorem 2.2.)
The bound on VP(�xn) is also an upper bound on the rate of growth of the functions
computed by the programs in Lk

2.

Theorem 3.3 For each k ≥ 1, for any p, q ≥ 0, (f k
2 ◦ f p

1 ◦ f q
0) ∈ Lk

2.

This easily follows from the definition of the classes Lk
2 of ELPs and the fact that

f k
2 ∈ Lk

2 for each k.

502 ZLATAN DAMNJANOVIC

4 We now consider the language BA of Bounded Arithmetic. The nonlogical sym-
bols of BA include the constant “0” denoting 0, a single 1-place function symbol for
the successor function, and two 3-place predicates which express the graphs of the ad-
dition and multiplication functions on N, respectively. The logical apparatus of BA
differs from that of the language of First Order Arithmetic only in that the unbounded
quantifiers ∃x and ∀x are replaced by the bounded quantifiers (∃x < y) and (∀x < y).
Aside from that, terms and formulas are built up and interpreted in the usual way. (If
y = 0, (∃x < y)A (x, �xn) is false and (∀x < y)A (x, �xn) is true for any �xn.) Follow-
ing Smullyan [18], pp. 30–31, we call the sets and relations of integers definable in
the language BA constructive arithmetical, or CA for short. The CA predicates are
closed under explicit transformation, namely the operations of permutation and iden-
tification of variables, substitution of a constant for a variable, and introduction of
“dummy” variables.

Smullyan found it convenient to represent positive integers in dyadic notation
for the purposes of developing the fundamentals of recursion theory on N. The dyadic
representation is a slight variant of the binary notation: there are two digits, “1” and
“2,” and a string a0, . . . , an of these digits is the dyadic numeral for an · 2n + · · · +
a0 · 20. This determines a 1-1 correspondence ν between the set D of such strings and
the positive integers, the nth string in the lexicographic ordering of the dyadic strings
being the numeral for n. We think of the concatenation operation on these numerals as
determining a relation C(x, y, z) on integers: C(x, y, z) holds iff the dyadic numeral
z for z is the result of successively writing the digits of the dyadic numeral y for y to
the right of the last digit of the dyadic numeral x for x. We sometimes write x ∗ y = z
if this is the case. The dyadic numerals for x and y are then said to be parts of the
numeral for z. It turns out that x ∗ y = (x · 2|y|) + y, where |y|, sometimes written
�(y), is the length of the dyadic numeral y for y.8

Smullyan introduced the class of rudimentary relations (RUD) as the smallest
class of relations on N that contains C(x, y, z) and is closed under the logical oper-
ations ¬, &,∨ and →, the bounded quantifiers (∀x < y) and (∃x < y), and explicit
transformation. He showed that C(x, y, z) is CA. (See [18], pp. 77–81.) Formally,
the variables range over dyadic strings, but the bounded quantifiers are interpreted
with respect to the natural ordering < on N: e.g., (∀x < y)A (x, �yn) holds just in case
y = 0 or else A (x, �yn) is true for all strings x such that ν(x) < ν(y); analogously for
(∃x < y).

The classes CA and RUD were shown to coincide by Bennett [1].9 Furthermore,
the same class of relations can be equivalently characterized as the smallest class of
relations on N containing the polynomial relations that is closed under bounded quan-
tification. (A relation R(�xn) is polynomial iff R(�xn) ⇔ P(�xn) = 0 for some polyno-
mial P(�xn) with integral coefficients.) This latter class has also been called the class
of bounded arithmetical relations. (See Harrow [10] for more details.) It follows from
these results that the CA relations are closed under bounded minimization—so that
(µy < z)A (y, �xn) is CA if A (y, �xn) is—as well as under quantification bounded by
a polynomial.

Smullyan showed that all of the formal machinery necessary for establishing
the basic results of recursion theory, having to do in particular with Gödel number-
ings and codings of computations, can be developed using only rudimentary relations,

ELEMENTARY FUNCTIONS 503

and thus within CA. This fact was employed by Ritchie [16] in arithmetizing Turing
machine computations as part of his analysis of elementary functions as “predictably
computable.” For our purposes, however, it is convenient to use what appears to be a
more elementary formal apparatus than the one presented by Smullyan [18]. We fo-
cus on a subclass of RUD, called the positive rudimentary relations, PRUD for short.
This class was originally introduced by Bennett [1], who proved that the graphs of
x + y, x · y and xy are PRUD. The advantage of working with PRUD is that it can
be shown (see Theorem 4.2 below) that a wide class of rapidly growing functions
defined by primitive recursion from functions with PRUD graphs themselves have
PRUD graphs.10 This will allow us to describe the process of computation of a LOOP

program for a given input in a direct way.
To describe PRUD, we introduce quantifiers over subwords: given a predicate

A (x, �yn), let (∀x � z)A (x, �yn), respectively (∃x � z)A (x, �yn), hold if and only if
A (u, �yn) holds for any (respectively, some) string u that is a part (or a substring) of the
string z. Thus, e.g., (∀x � 22)A (x, �yn) holds iff both A (2, �yn) and A (22, �yn) are true.
(Note that 22 = 5 and 2 = 1.) On the other hand, we interpret (∃x|x|≤|z|)A (x, �yn) to
hold iff A (u, �yn) is true for some string u such that |u| < |z|. In general, this restricts
the values of the variable x in (∃x|x|≤|z|) to a set of strings that includes the dyadic
numerals for all integers ≤ ν(z), and possibly some more.

The smallest class of relations on D (and thus on N) that includes C(x, y, z)
and is closed under &,∨, (∀x � z) and (∃x � z), are called strictly rudimentary. The
PRUD relations are in addition closed under (∃x|x|≤|z|). (It is easily shown that
(∃x � z) can be defined in terms of (∃x|x|≤|z|) and the remaining operations.) Those
PRUD relations R that have complements ¬R that are also PRUD we call total posi-
tive rudimentary (TOTAL). (In [1] they are called strongly rudimentary.) Then strictly
rudimentary relations are PRUD, and PRUD ⊆ RUD. Moreover, the following clo-
sure properties obtain:

Lemma 4.1

1. If R is TOTAL and S is PRUD, then R → S is PRUD.

2. Let a, b ∈ N, and let R(x, �yn) be a PRUD relation. Then

(∃x|x|≤a·|z1∗···∗zm|+b)R(x, �yn)

is also PRUD.

3. If R is strictly rudimentary, then so is ¬R.

4. If R is strictly rudimentary, then R is TOTAL.

(1) is obvious, (4) follows from (3), and (2) and (3) were proved in [1]. From this
point on we use the abbreviated notation (∃x � z) in place of the more cumbersome
(∃x|x|≤|z|). Then (∃x � a · z + b) will be short for (∃x|x|≤a·|z|+b).

The important property of PRUD relations mentioned earlier is summarized in
the following.

Theorem 4.2 (Proskurin) Suppose

f (�ym, 0) := g(�ym) and f (�ym, z + 1) := h(f (�ym, z), �ym, z)

504 ZLATAN DAMNJANOVIC

and furthermore that

z ≤ f (�ym, z) and (f (�ym, z))2 ≤ f (�ym, z + 1).

If the relations g(�ym) = x and h(x, �ym, z) = y are both PRUD, then so is f (�ym, z) =
y.

The proof is found in [14].

5 We proceed to sketch how ELP computations can be arithmetized using PRUD
relations. (The detailed treatment is in Appendix 2.) The first step is to code ELPs as
finite sequences of instructions, each of the instructions being one of the five afore-
mentioned types and involving one or two program variables. Thus, e.g., the instruc-
tions Vi ← 0 and Vi ← Vi + 1 will be represented by the ordered pairs (1, i) and
(2, i), respectively, and Vj ← Vi by the ordered triple (3, i, j). The description of
LOOP instructions includes one extra element: an instruction LOOP Vi that is a part of
a loop segment of length m is represented by the ordered triple (4, m, i), and the end
instruction END of that segment is represented by the ordered pair (5, m). Then if an
L0 or 〈L0〉L0 program P of length p consists of the instructions I1, . . . , Ip, (p ≥ 1),
we can numerically represent it by means of the indexed series,

(∗) (1, #I1), (2, #I2), . . . , (p, #Ip),

where #I j, for 1 ≤ j ≤ p, codes the ordered pair or triple representing I j. Smullyan
showed that indexed series of finite length, as well as pairs and triples, can be coded
using only rudimentary relations. We let the Gödel number #P of the program P be
the code of (∗).

To code L1 and L2 programs we employ a somewhat more complex device. An
Lk

1, k ≥ 1, program P has the form

L0(〈L0〉L0) . . . (〈L0〉︸ ︷︷ ︸
k times

L0)

We represent it by an indexed series

(∗∗) (0, #P0), (1, #P1), . . . , (k, #Pk),

where #P0 is the Gödel number of an L0 program and each #Pi, 1 ≤ i ≤ k, is the Gödel
number of an 〈L0〉L0 program. (We call the latter the components of P.) Assuming
that the Gödel numbering of L1 programs is determined in this way, we may use the
same idea to code Lk

2, k ≥ 1, programs by indexed series such as (∗∗) in which #P0

and #Pi, 1 ≤ i ≤ k, are Gödel numbers of the component L1 and 〈L1〉L1 programs,
respectively. Thus, we may think of Lk

2 programs as represented by trees of height
2: the top node is the code of an indexed series of the sort just described, its imme-
diate descendants are the Gödel number of an L1 program and the Gödel numbers of
k many 〈L1〉L1 programs, respectively, and the immediate descendants of the latter
and the endpoints of the tree are their L0 and 〈L0〉L0 components. (This is carried out
in Appendix 1.)

ELEMENTARY FUNCTIONS 505

The next step is numerically to represent the course of a computation that pro-
ceeds according to a given Lk

2 program P. Here we need first to be able to represent a
state of the register machine that executes P. Such a machine state is characterized by
a particular assignment of numerical values to the variables of P, which we represent
by the indexed series,

(∗∗∗) (0, v0), . . . , (s, vs),

assuming that all the variables in P come from Vs : vi(0 ≤ i ≤ s) is the numerical
value of the variable Vi, i.e., the contents of the register i at some given time t. (We
shall assume that V0 is always the output variable of P, that the input variables of
P are always even-numbered, i.e., of the form V2i, 0 ≤ i ≤ j for some j, and that
the local variables of P are always odd-numbered.) To represent a particular stage
of computation according to an Lk

2 program P we indicate what the state of the ma-
chine that executes the program is at that point and which one of the instructions in
P is about to be performed. This we do with an ordered pair (i, σ), where σ codes
some machine state characterized by an indexed series such as (∗∗∗), and i codes an
ordered triple (j, q, m) of integers (j, q ≥ 0 and m ≥ 1). The triple indicates that the
instruction about to be executed is part of the jth (0 < j ≤ k)〈L1〉L1—L1 if j = 0—
component P j of P, namely that it is the mth instruction in the qth 〈L0〉L0—L0 if
q = 0—component P j,q of P j.

The pair (i, σ) is an instantaneous description (i.d.) of a register machine with at
most s + 1 registers computing an Lk

2 program. We can then completely describe the
sequence of steps in a computation according to P as a sequence of i.d.s with the fol-
lowing property: in each noninitial term ((j p+1, qp+1, mp+1), σp+1) of the sequence,
σp+1 codes the machine state that results from σp after the mp-th instruction in P j p,qp

is executed once, the mp+1-th (= (mp + 1)-st) instruction in P j p+1,qp+1 , if it exists, be-
ing the next one to be performed, if any. (Then j p+1 = j p and qp+1 = qp. In case
P j p,qp has only mp instructions, then qp+1 = qp +1 and mp+1 = 1; if there are only qp

many 〈L0〉L0 components of P j p , then j p+1 = j p + 1 and qp+1 = 0 and mp+1 = 1.)
Since LOOP program computations always terminate, the sequence will always be fi-
nite and its last term of the form ((k + 1, 0, 1), σ∗). Then σ∗ codes the state the regis-
ter machine finally assumes; we say that such an i.d. is a final i.d. for a program coded
by an indexed series of length k + 1.

What remains now is to express the value of the function computed by a given
program P for arguments �xn as the output of the computation started on �xn as input.
The output will simply be the value of the output variable V0 in the resulting final i.d.
But to express this value as a function of �xn, we have to show how the Gödel num-
ber for the final i.d. can be determined in terms of �xn and the Gödel number of the
program P. This we do by precisely describing how, starting with an i.d. that char-
acterizes the initial state of the machine—in which the input variables V2, . . . , V2n

have values x1, . . . , xn, respectively, and all other program variables in P have value
0: each nonfinal i.d. yields a subsequent one in accordance with the program P.

Such a description is given by the sequence

z0, z1, . . . , zi

506 ZLATAN DAMNJANOVIC

where z0 is the i.d. corresponding to the initial state of the machine with input �xn, each
z j(0 ≤ j < i) the (uniquely determined) i.d. at the jth step of the computation of P
with input �xn, and zi the final i.d. (Then i is the number of steps in the computation
of P for input �xn.) Instead, we consider the sequence,

(†) J∗(1, z0), J∗(z0, z1), . . . , J∗(zi−1, zi),

where the function J∗(x, y) := (x + y)2 + x determines a coding of N×N by a subset
of N. We need to be able to express (†) as the sequence of successive values of a
function H with a RUD graph, and it is for this that we use Theorem 4.2. In terms of
the graph of the function H we define the RUD predicate,

Tn(k, e∗, �xn, i, u) & OUTPUT(v, y),

which holds just in case i is the number of steps in the computation represented in
a sequence such as (†) that ends with u, y is the value of the output variable in the
resulting final i.d. v, and e∗ is the Gödel number of theLk

2 program P. Then the value
of the function computed by P for input �xn can be expressed in the form

µy[∃i∃u(Tn(k, e∗, �xn, i, u) & OUTPUT(L∗(u), y))] (4)

(K∗ and L∗ are projection functions associated with J∗, so that J∗(K∗(x), L∗(x)) = x
for any integer x in the range of J∗.)

6 For our purposes, it is important to find an upper bound for µy and ∃i∃u in (4) in
terms of e∗ and �xn. If Tn(k, e∗, �xn, i, u), then u = zi, where zi is as in (†). The values
of zm, 0 ≤ m ≤ i, are the Gödel numbers of i.d.s of the form

((j, q, m), (v0, . . . , vs)
#)

where (v0, . . . , vs)
is the sequence number, i.e., the code, of the sequence (v0, . . . ,

vs). (We are referring to the coding scheme for sequences used in [18], p. 82, which is
due to Quine.) Furthermore, if P ∈ Lk

2, then vu ≤ f k
2 ◦ f lth(P)

1 ◦ f 2 lth(P)
0 (max(�xn)) = v

for 0 ≤ u ≤ s, by Theorem 3.2. We first look for an appropriate upper bound for
(v0, ..., vs)

#.

Lemma 6.1 Suppose that n ≥ 2.

1. If ai = a for each i, 1 ≤ i ≤ n, then

a1 ∗ . . . ∗ an = a(2(n−1)l(a) + 2(n−2)l(a) + · · · + 2l(a) + 1).

2. If y > 0 and ai ≤ y for each i, 1 ≤ i ≤ n, then

(a1, . . . , an)
< (26 · y)n(2n+1)+1.

The proof is in Appendix 3.
We have been assuming so far that a Gödel numbering of ELPs has been set up.

(This is done in Appendix 1.) It is convenient, however, to introduce an indexing of
Lk

2 programs that makes explicit the number of instructions, lth(P), in a program P,

ELEMENTARY FUNCTIONS 507

and the number n of variables in P. Let J∗(e∗, lth(P), n) be an index of P with Gödel
number e∗. (Thus, n = L∗L∗(e), where e is the index of P.) From Lemma 6.1(2) we
have that

(v0, . . . , vs)
< (26 · v)L∗L∗(e)·(2L∗L∗(e)+1)+1

Since in general

J∗(K∗(x), L∗(x)) = (K∗(x) + L∗(x))2 + K∗(x),

it follows that

L∗L∗(e) · (2L∗L∗(e)+ 1)+ 1 = 2(L∗L∗(e))2 + L∗L∗(e)+ 1 ≤ 2L∗(e)+ L∗(e)+ 1.

Hence (v0, . . . , vs)
< (26 · v)3L∗(e)+1, and if k ≥ 2,

(v0, . . . , vs)
< [26(f k

2 ◦ f lth(P)
1 ◦ f 2 lth(P)

0 (max(�xn)))]
3L∗(e)+1 =

= [f 6
1 ◦ f k

2 ◦ f lth(P)
1 ◦ f 2 lth(P)

0 (max(�xn))]
3L∗(e)+1 ≤

≤ [f k
2 ◦ f 6

0 ◦ f lth(P)
1 ◦ f 2 lth(P)

0 (max(�xn))]
3L∗(e)+1 ≤

≤ [f k
2 ◦ f lth(P)

1 (max(�xn) + 4 lth(P) + 12)]3L∗(e)+1 ≤
≤ f k

2 ◦ f1(f lth(P)
1 (max(�xn) + 4 lth(P) + 12) + 3L∗(e) + 1) ≤

≤ f k
2 ◦ f1 ◦ f 2L∗(e)

0 (f lth(P)
1 (max(�xn) + 4 lth(P) + 12)) ≤

≤ f k
2 ◦ f1 ◦ f lth(P)

1 (max(�xn) + 4 lth(P) + 12 + 4L∗(e)) =
= f k

2 ◦ f lth(P)+1
1 (max(�xn) + 4 lth(P) + 4L∗(e) + 12) ≤

≤ f k
2 ◦ f lth(P)+1

1 (max(�xn) + 4 lth(P) + e + 12),

given that K∗(e) ≥ 2 and L∗(e) ≥ 1.
To obtain an upper bound for the values of zm, note that assuming k ≥ 2 we have

that, for some integer p ≤ e that codes an ordered triple (j, q, m),

J(p, (v0, . . . , vs)
#) ≤ J(e, f k

2 ◦ f lth(P)+1
1 (max(�xn) + 4 lth(P) + e + 12)) ≤

≤ [26(f k
2 ◦ f lth(P)+1

1 (max(�xn) + 4 lth(P) + e + 12))]11 =
= [f 6

1 ◦ f k
2 ◦ f lth(P)+1

1 (max(�xn) + 4 lth(P) + e + 12)]11 ≤
≤ [f k

2 ◦ f 6
0 ◦ f lth(P)+1

1 (max(�xn) + 4 lth(P) + e + 12)]11 ≤
≤ [f k

2 ◦ f lth(P)+1
1 (max(�xn) + 4 lth(P) + e + 24)]11 ≤

≤ f k
2 ◦ f1(f lth(P)+1

1 (max(�xn) + 4 lth(P) + e + 24) + 11) ≤
≤ f k

2 ◦ f1 ◦ f 6
0 ◦ f lth(P)+1

1 (max(�xn) + 4 lth(P) + e + 24) ≤
≤ f k

2 ◦ f lth(P)+2
1 (max(�xn) + 4 lth(P) + e + 36).

Thus each term of the sequence (†) has an upper bound:

J∗(f k
2 ◦ f lth(P)+2

1 (max(�xn) + 4 lth(P) + e + 36),

f k
2 ◦ f lth(P)+2

1 (max(�xn) + 4 lth(P) + e + 36)) ≤
≤ 5[f k

2 ◦ f lth(P)+2
1 (max(�xn) + 4 lth(P) + e + 36)]2 ≤

508 ZLATAN DAMNJANOVIC

≤ 5[f k
2 ◦ f0 ◦ f lth(P)+2

1 (max(�xn) + 4 lth(P) + e + 36)] ≤
≤ 5[f k

2 ◦ f lth(P)+2
1 (max(�xn) + 4 lth(P) + e + 38)] ≤

≤ f 3
1 ◦ f k

2 ◦ f lth(P)+2
1 (max(�xn) + 4 lth(P) + e + 38) ≤

≤ f k
2 ◦ f 3

0 ◦ f lth(P)+2
1 (max(�xn) + 4 lth(P) + e + 38) ≤

≤ f k
2 ◦ f lth(P)+2

1 (max(�xn) + 4 lth(P) + e + 44) ≤
≤ f k

2 ◦ f lth(P)+2
1 ◦ f 2 lth(P)+22

0 (max(�xn) + e) ≤
≤ f k

2 ◦ f lth(P)+2
1 ◦ f 2 lth(P)+22

0 (�n
i=1xi + e).

(Here we note that J∗(x, x) = (2x)2 + x ≤ 5x2.) An upper bound for the values of H
suffices as an upper bound for i as well, since

i ≤ f k
2 ◦ f lth(P)

1 ◦ f 2 lth(P)
0 (max(�xn)) ≤ f k

2 ◦ f lth(P)
1 (max(�xn) + 4 lth(P))

by Theorem 3.2.
The value of the output variable of P at the end of the computation that started

with input �xn is ≤ f k
2 ◦ f lth(P)

1 ◦ f 2 lth(P)
0 (max(�xn)), as noted earlier. Hence the upper

bound for i and u in (4) just obtained also serves as an upper bound for µy. Let

ψ
k, j
n (u, �xn) := f k

2 ◦ f j+2
1 ◦ f 2 j+22

0 (�n
i=1xi + u)

For each k, j, n ≥ 1, ψ
k, j
n ∈ Lk

2. (Cf. Theorem 3.3 and [8], pp. 307–308.) And we
have the following result.

Theorem 6.2 Suppose n ≥ 1 and k ≥ 2. For any n-place function f ∈ Lk
2,

f (�xn) =
(µy < ψ

k, j
n (e, �xn))[∃i, u ≤ ψ

k, j
n (e, �xn)(Tn(k, e, �xn, i, u) & OUTPUT(L∗(u), y))]

for some integers e and j.

7 For a given register machine (RM) program P with registers X1, . . . , Xn, Z1, . . . ,

Zm, we let In(Xi) and In(Z j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m, be the initial contents of
Xi and Z j, i.e., before the computation begins. We let Out(Xi) and Out(Z j) be the
contents of the registers Xi and Z j at the end of the computation if the computation
terminates. We say that P computes a predicate A (�xn) in the standard format just in
case for any integers m1, . . . , mn, if In(Xi) = mi and In(Z j) = 0 for all i, j(1 ≤ i ≤
n and 1 ≤ j ≤ m) and the computation eventually terminates, then Out(Xi) = In(Xi),

Out(Z1) = 0 ⇔ A (�mn) is true

Out(Z1) = 1 ⇔ A (�mn) is false

and Out(Z j) = 0 for all j, 1 < j ≤ m.
Let TP(�xn) be the number of steps in the computation of P that begins with

In(Xi) = xi and In(Z j) = 0 for all i, j(1 ≤ i ≤ n and 1 ≤ j ≤ m). The function TP

is possibly partial. Let �m∗
n be the sequence of integers that results when the ith term,

mi, of �mn is replaced by m∗
i . Suppose that in general if mi ≤ m∗

i , then TP(�m∗
n)↓ if

TP(�mn)↓ and furthermore TP(�mn) ≤ TP(�m∗
n). In that case we say that the program P

is regular.

ELEMENTARY FUNCTIONS 509

Lemma 7.1 There are regular RM programs ID(Xi, X j) and LE(Xi, X j) that com-
pute xi = x j and xi ≤ x j, respectively, in the standard format, and for any x1, x2,
TID(x1, x2)↓ and TLE(x1, x2)↓ and

TID(x1, x2) ≤ 6x1 + 8x2 + 9 and TLE(x1, x2) ≤ 7x1 + 6x2 + 6.

Such programs are easily constructed.

Theorem 7.2 Let A (�xn) be a CA predicate. Then there is a regular RM program
P that computes A (�xn) in the standard format and there are integers p, q, depending
on the logical complexity of A (�xn), such that for any �xn, TP(�xn)↓ and

TP(�xn) ≤ (f2 ◦ f p
1 ◦ f q

0)(max(�xn)).

Proof: The argument is by induction on the complexity of the predicate A (�xn).
If A (�xn) is atomic, it is of the form x j + xk = xi or x j · xk = xi, or else is ob-

tained by explicit transformation from such a formula. Now, there are regular RM
programs ID+ and ID× that compute x j + xk = xi and x j · xk = xi in the standard
format, respectively, and for any x1, x2, x3, TID+ (x1, x2, x3)↓ and TID× (x1, x2, x3)↓
and TID+ (x1, x2, x3) ≤ f 6

1 ◦ f 8
0 (max(�xn)) and

TID× (x1, x2, x3) ≤ (f2 ◦ f 1
1 ◦ f 3

0)(max(x1, x2, x3)).

(We leave the construction of such programs to the reader.)
Assume now, as the induction hypothesis, that the Theorem holds for CA pred-

icates B(�xn) and C (�xm) and that regular RM programs P and Q compute B(�xn) and
C (�xm), respectively, as stated in the Theorem. Let �yk(k ≤ m) be the free variables
of C (�xm) that are not among �xn. Then the following is a regular RM program P&Q
that computes (B&C)(�xn, �yk) in the standard format such that TP&Q(�xn, �yk)↓ for any
�xn, �yk, and TP&Q(�xn, �yk) ≤ TP(�xn) + TQ(�xn, �yk) + 3.

z1+ ���
��

�z1−
e

�

��
��

�Q

�

�

z1+

z1−
�

e

��
��
��
��

�P�

By the induction hypothesis, TP(�xn)↓ and TQ(�xn, �yk)↓ for any �xn, �yk. In addi-
tion

TP(�xn) ≤ (f2 ◦ f p1
1 ◦ f q1

0)(max(�xn))

and
TQ(�xn, �yk) ≤ (f2 ◦ f p2

1 ◦ f q2
0)(max(�xn, �yk))

for some p1, q1, p2, q2. Then,

TP&Q(�xn, �yk) ≤ (f2 ◦ f p1
1 ◦ f q1

0)(max(�xn))+
+ (f2 ◦ f p2

1 ◦ f q2
0)(max(�xn, �yk)) + 3 ≤

≤ 2(f2 ◦ f max(p1,p2)

1 ◦ f max(q1,q2)

0)(max(�xn, �yk)) + 3 ≤

510 ZLATAN DAMNJANOVIC

≤ (f 2
0 ◦ f 1

1 ◦ f 1
2 ◦ f max(p1,p2)

1 ◦ f max(q1,q2)

0)(max(�xn, �yk)) ≤
≤ (f 2

0 ◦ f 1
2 ◦ f 1

0 ◦ f max(p1,p2)

1 ◦ f max(q1,q2)

0)(max(�xn, �yk)) ≤
≤ (f 1

2 ◦ f 3
0 ◦ f max(p1,p2)

1 ◦ f max(q1,q2)

0)(max(�xn, �yk)) ≤
≤ (f2 ◦ f max(p1,p2)

1 ◦ f max(q1,q2)+3
0)(max(�xn, �yk)).

A similar but simpler argument shows that if a regular RM program P computes a CA
predicate B(�xn) as described in the Theorem, then a regular RM program ¬P can be
found that computes ¬B(�xn) in the standard format such that, for all �xn, T¬P(�xn)↓ if
TP(�xn)↓, and T¬P(�xn) ≤ TP(�xn) + 2. Then there are integers p, q such that

TP(�xn) ≤ (f2 ◦ f p
1 ◦ f q

0)(max(�xn)) ⇒ T¬P(�xn) ≤ (f2 ◦ f p
1 ◦ f q+1

0)(max(�xn)).

Suppose now that a regular RM program P computes B(�xn) in the standard for-
mat, and assume that the local variables in P are all among Z1, . . . , Zk. Let P∗ be the
RM program that results when the input variable X1 in P is replaced by Zk+1. Then
the following RM program, ∀z < xP, computes (∀z < x1)B(�xn) in the standard for-
mat:

z1+

e

zk+1−e
z1−

LE(xi, zk+1)

e
zk+1+z1−P∗xi+

e

xi−

�

�

�
�

�
���

��

�

��

��
��

��
��

��
��

��
��

��
��

��
��
��

�

�

��
��

�

Then, for all �xn, T∀z<xP(�xn)↓ if TP(�xn)↓. Furthermore, we have that,

T∀z<xP(�xn) ≤ 2 + �
x1
z=0(TP(z, x2, . . . , xn) + 2 + TLE(x1, z) + 1) + (x1 + 1) =

= x1 + 3 + �
x1
z=0(TP(z, x2, . . . , xn) + (7x1 + 6z + 6) + 3) =

= (x1 + 3) + (x1 + 1)(7x1 + 9) + �
x1
z=0(TP(z, x2, . . . , xn) + 6z) =

= 2 + (x1 + 1)(7x1 + 10) + 6 · �x1
z=0 z + �

x1
z=0TP(z, x2, . . . , xn) =

= 2+(x1+1)(7x1+10)+3x1(x1+1)+�
x1
z=0TP(z, x2, . . . , xn) =

= 2 + 10(x1 + 1)2 + �
x1
z=0TP(z, x2, . . . , xn) ≤

≤ 2 + 10(2x1+1 + 1) + �
x1
z=0TP(z, x2, . . . , xn) ≤

≤ 24 + 2x1+5 + �
x1
z=0TP(z, x2, . . . , xn) ≤

≤ 2x1+6 + �
x1
z=0TP(z, x2, . . . , xn).

By the induction hypothesis, TP(�xn) ≤ (f2 ◦ f p
1 ◦ f q

0)(max(�xn)) for some p, q, and
the program P is regular. Hence for each z ≤ x1, TP(z, x2, . . . , xn) ≤ TP(�xn), and so

�
x1
z=0TP(z, x2, . . . , xn) ≤ x1 · TP(�xn) ≤ 2x1 · TP(�xn) = 2x1+g(�xn),

ELEMENTARY FUNCTIONS 511

where g(�xn) = f p
1 ◦ f q

0 (max(�xn)).

Then T∀z<xP(�xn) ≤ 2x1+6 + 2x1+g(�xn) ≤ 2g(�xn)+2x1+6. Now we have that,

g(�xn) + 2x1 + 6 = f p
1 ◦ f q

0 (max(�xn)) + 2x1 + 6 =
= 2(f p−1

1 ◦ f q
0 (max(�xn)) + x1 + 3) ≤

≤ 2(f p−1
1 ◦ f q

0 (max(�xn)) + f 2
0 (x1)) ≤

≤ 2(f p
1 ◦ f max(q,2)

0 (max(�xn)) =
= f p+1

1 ◦ f max(q,2)

0 (max(�xn)).

But then T∀z<xP(�xn) ≤ f2 ◦ f p+1
1 ◦ f max(q,2)

0 (max(�xn)). The program ∀z < xP is
easily seen to be regular.

A slightly different construction yields a regular program ∃z < xP that computes
(∃z < x1)B(z, x2, . . . , xn) in the standard format with the same estimate of running
time. This completes the induction on the complexity of A (�xn). Then the Theorem
is easily seen to extend to the predicates obtained by explicit transformation from CA
predicates considered in the induction. This completes the proof of Theorem 7.2.

The estimate of the running time given in Theorem 7.2 will help us place the CA
predicates in the hierarchy Lk

2. It turns out that computations of RM programs can be
“simulated” using a sufficient number of computations of appropriate loop programs
of very low complexity, with depth of nesting not exceeding 1. This is a corollary of
the following result of Meyer and Ritchie [13].

Theorem 7.3 For any RM-program P there is an L1 program P∗ such that the
LOOPµ program,

H ← 1
WHILE H �= 0 DO

P∗

END

is equivalent to P.

(Here H is a local variable occurring in P∗.)
The corollary that interests us is the following.

Theorem 7.4 Let P be an RM program such that TP(�xn) ≤ f (�xn). Then there is
an L1 program P∗ such that, for any k ≥ 2, given any Lk

2 program B f computing f
(if there is one) an Lk+1

2 program L(P) of the form

B f

S ← F
H ← 1
LOOP S

P∗

END

can be obtained that is equivalent to P.

512 ZLATAN DAMNJANOVIC

(Here, F is the output variable of B f and H is a local variable appearing in P∗.) For a
detailed proof of both results, see [5], §4.2. Note that if B f is an Lk

2 program (k ≥ 1),
then L(P) belongs to

Lk
2L0〈L1〉 = Lk−1

2 (〈L1〉L1)L0〈L1〉 ⊆ Lk−1
2 〈L1〉L1〈L1〉 ⊆ Lk

2〈L1〉 ⊆ Lk+1
2 .

The program L(P) repeats P∗ sufficiently many times ensuring at the same time that a
larger-than-necessary number of repetitions does not damage the simulation. (Cf. [5],
pp. 546-547.) From Theorems 7.2, 7.4 and 3.3 we therefore have the following.

Theorem 7.5 For any CA predicate f , f ∈ L2
2.

8 We now use the ideas behind Theorem 7.4 together with other results established
so far to prove the following enumeration theorem for the functions in the hierarchy
{Lk

2 | k ≥ 2} . Let Lk, j
2 be the class of functions in Lk

2 computable by some LOOP

program of length ≤ j.

Theorem 8.1 Let k ≥ 2 and n ≥ 1. For any j ≥ 1 there is a function �
k, j
n ∈ Lk+1

2 ,

uniformly depending on k and j, such that for any n-place function g ∈ Lk, j
2 ,

g(�xn) = �
k, j
n (e, �xn)

for some integer e, an index of g.

Proof: Let

�n(k, b, �xn, v) := (µy < v)[∃i, u ≤ v(Tn(k, b, �xn, i, u) & OUTPUT (L∗(u), y))]

for any n ≥ 1. Then, by Theorem 6.2, for any k ≥ 2, n ≥ 1,

g(�xn) = �n(k, e, �xn, ψ
k, j
n (e, �xn))

for some e and j, where ψ
k, j
n ∈ Lk

2 is as described in §6. (Recall from the proof of
Theorem 6.2 that the constant j is given as ≥ lth(P) for some Lk

2 program P with
index e that computes g.) The function �n has a RUD graph; moreover,

g(�xn) = y ⇔ �n(k, e, �xn, ψ
k, j
n (e, �xn), y) = 0

where �n is the RUD predicate expressing the characteristic function of the RUD
graph of �n. By the results of §7 and Theorem 3.3, �n is computable by an L1

2〈L1〉
program L(P) of the form,

B f

S ← F
H ← 1
LOOP S

P∗

END

ELEMENTARY FUNCTIONS 513

where P∗ ∈ L1, and B f computes f2 ◦ f p1
1 ◦ f q1

0 (max(�xn)) for some p1, q1, and
OUT F for B f . From the construction of L(P) it follows that replacing B f by an Lk

2

program Bk, j,n
f , also with OUT F, that computes

f k
2 ◦ f j+p1+2

1 ◦ f 2 j+q1+22
0 (�n

i=1xi + e),

which in turn ≥ ψ
k, j
n (e, �xn), results in an Lk

2〈L1〉 program equivalent to L(P). Then
�n(k, e, �xn, ψ

k, j
n (e, �xn)) is computed by an Lk

2〈L1〉 ⊆ Lk+1
2 program of the form,

Bk, j,n
f

S ← F
T ← F
H ← 1
V ← 0
LOOP S

P∗ [IN: K,U, X1, . . . , Xn, T, V]
Y ← V
V ← V + 1

END

where OUT Y , and assuming that the value of the input variable V in P∗—which cor-
responds to the argument y in �n(k, e, �xn, z, y)—is restored at the end of the compu-
tation of P∗ for a given set of inputs. Hence we may let

�
k, j
n (b, �xn) = �n(k, b, �xn, ψ

k, j
n (b, �xn)).

This completes the proof of Theorem 8.1.

Remark 8.2 One way to further “uniformize” Theorem 8.1 is to eliminate the de-
pendence of the enumerating functions �

k, j
n on j. This comes at the price of “push-

ing” the enumerating functions for Lk
2 “up” to Lk+2

2 . Note that, for j = lth(P),

ψ
k, j
n (e, �xn) ≤ f k

2 ◦ f j+p1+2
1 ◦ f 2 j+q1+22

0 (�n
i=1xi + e) ≤

≤ f k
2 ◦ f2((j + p1 + 2) + f 2 j+q1+22

0 (�n
i=1xi + e)) ≤

≤ f k+1
2 ◦ (f0(j + p1) + f1(2 j + q1 + 22 + (�n

i=1xi + e)) ≤
≤ f k+1

2 (2 f1(�
n
i=1xi + (p1 + q1) + 22 + e + 2 j)) ≤

≤ f k+1
2 ◦ f 2

1 (�n
i=1xi + (p1 + q1) + 22 + 2e) ≤

≤ f k+1
2 ◦ f 2

1 ◦ f p1+q1+11
0 (�n

i=1xi + 2e) := ξk
n(e, �xn)

since lth(P) ≤ e if e is the index of P. Then g(�xn) = �n(k, e, �xn, ξ
k
n(e, �xn)) where

ξk
n ∈ Lk+1

2 and 	k
n(b, �xn) := �n(k, b, �xn, ξ

k
n(b, �xn)) is computed by an Lk+1

2 〈L1〉 ⊆
Lk+2

2 program of the same form as above. Hence 	k
n is the desired Lk+2

2 enumeration
of Lk

2.

We may now invoke standard diagonalization arguments to derive some more
information about how the classification {Lk

2} of ELPs determines the hierarchy of
functions {Lk

2}. Theorem 8.1 states that �
k, j
n enumerates n-place functions in Lk, j

2

514 ZLATAN DAMNJANOVIC

for k ≥ 2. We claim that �
k, j
1 �∈ Lk, j

2 and so Lk, j
2 ⊂ Lk+1

2 for k ≥ 2. Note that since

�
k, j
1 ∈ Lk+1

2 , then
k, j ∈ Lk+1
2 where
k, j := 1 .− �

k, j
1 (x, x), as 1 .− y is easily seen

to be in L1. If
k, j ∈ Lk, j
2 then
k, j(x) = �

k, j
1 (e, x) for some e, and �

k, j
1 (e, e) =

k, j(e) = 1 .− �
k, j
1 (e, e), a contradiction. On the other hand, a similar argument

involving 	k
1 instead of �

k, j
1 shows that for any k ≥ 2, there are predicates, i.e., 0,1-

functions, in Lk+2
2 that are not contained in Lk

2. (Note that the function,

sg(x) =
{

0 if x = 0
1 if x > 0

is in L1.)

Appendix Appendix 1 We make use of the work of Smullyan [18], pp. 77–87. It
is easily seen from the proofs given there that the following predicates are strictly
rudimentary and hence TOTAL:

1. J(x, y, z), the graph of the pairing operation (x, y)#, and K(z, x) and L(z, y),
the graphs of the associated projection operations; we sometimes refer to these
functions directly by J(x, y), K(x) and L(x), respectively;

2. <, ≤, =, the ordering relations between integers;
3. Seq(x), the set of sequence numbers; x ∈ y, which holds iff y is a sequence

number and x is a term of the sequence it codes; and x <w y, which holds just
in case w is a sequence number, x and y are terms of the sequence coded, and
x precedes y in that sequence.

We first define several predicates that code the Gödel numbers of arithmetical in-
structions that may occur in LOOP programs, at the same time showing that the pred-
icates are strictly rudimentary and hence TOTAL:

Z(x) :⇔ (∃y � x)J(1, y, x)

SC(x) :⇔ (∃y � x)J(2, y, x)

A(x) :⇔ (∃y1, y2, y3 � x)(J(y1, y2, y3) & J(3, y3, x)).

Next, we state the condition under which an integer x codes an indexed series of
length y:

SRS(x, y) :⇔ Seq(x) & (∃v2, v � x)(J(1, v2, v) & v ∈ x) &

& (∀v1, v2, v � x)(J(v1, v2, v) & v ∈ x & v1 < y →
(∃u1, u2, u � x)(Plus(v1, 1, u1) & J(u1, u2, u) & u ∈ x)) &

& (∀z � x)(z ∈ x → (∃v1 � z)(∃v2 � z)(J(v1, v2, z) & y ≥ v1 ≥ 1)) &

& (∀v1, v2, v � x)(∀u2, u � x)(J(v1, v2, v) & J(v1, u2, u) &

v ∈ x & u ∈ x → v2 = u2) &

& (∀v1, v2, v � x)(∀u1, u2, u � x)(J(v1, v2, v) & J(u1, u2, u) &

v ∈ x & u ∈ x & v1 < u1 → v <x u).

(Throughout Appendices 1 and 2, Plus(x1, x2, x3) and Times(x1, x2, x3) are strictly
rudimentary predicates that define the graphs of the addition and the multiplication

ELEMENTARY FUNCTIONS 515

function, respectively. That such predicates exist was proved in [1].) We define the
predicate “SRS0(x, y)” the same way except that in the second conjunct “J(1, v2, v)”
is replaced by “J(0, v2, v),” and in the fourth conjunct “v1 ≥ 1” is replaced by “v1 ≥
0”. Again, these relations are strictly rudimentary and hence TOTAL.

We are now ready to define the predicate “x is the Gödel number of an L0 pro-
gram P of length m and all variables in P are from Vn”:

LP0(x, m, n) :⇔ SRS(x, m) &

& (∀y, v � x)[y ∈ x & L(y, v) → (Z(v) ∨ SC(v) ∨ A(v)) &

& ((Z(v) ∨ SC(v)) & (∃v2 � v)(L(v, v2) & v2 ≤ n)) ∨
∨(A(v) & (∃v1 � v)(∃v2, v3 � v1)(L(v, v1) &

& J(v2, v3, v1) & v2 ≤ n & v3 ≤ n))].

To describe loops, we define the predicates

LOOP(x, m) :⇔ (∃y1, y2 � x)(J(m, y1, y2) & J(4, y2, x))

END(x, m) :⇔ J(5, m, x)

meaning “x is the Gödel number of a LOOP instruction of length m” and “x is the
Gödel number of the end of a LOOP instruction of length m.” (All of these predicates
are TOTAL, for the same reason as above.) Then the Gödel numbers of 〈L0〉 programs
of length m with variables from Vn are defined by,11

LP〈0〉(x, m, n) :⇔ LP0(x, m, n) ∨ (∃y � x)(∃m1 � m)(∃k � n)[SRS(x, m) &

& SRS(y, m1) & LP〈0〉(y, m1, k) & k ≤ n & (∃z � x)(LOOP(z, m) &

& LL(z) ≤ n & J(1, z) ∈ x) & (∀z � y)(z ∈ y → (∃u � z)(Plus(K(z), 1, u) &

& J(u, L(z)) ∈ x)) & J(m, J(5, m)) ∈ x].

The complement relation ¬LP〈0〉(x, m, n) is also PRUD:

¬LP〈0〉(x, m, n) :⇔ ¬LP0(x, m, n) & (¬SRS(x, m) ∨ (SRS(x, m) &

& ((∀z � x)(J(1, z) ∈ x → ¬LOOP(z, m) ∨ LL(z) ≥ n) ∨
∨J(m, J(5, m)) �∈ x ∨ (∃z � x)(∃k � m)(Plus(k, 2, m) & SRS(z, k) &

& (∀v1, v2 � x)(∀u � x)(J(v1, v2) ∈ x & 2 ≤ v1 < m & Plus(u, 1, v1) →
→ J(u, v2) ∈ z) & ¬LP0(z, k, n))))).

We proceed to define the Gödel numbers of composite LOOP programs. First
we need the predicate CONC(x, x1, x2, m) meaning “indexed series with the Gödel
number x of length m is the concatenation of the two indexed series with the Gödel
numbers x1 and x2, respectively, in that order”:

CONC(x, x1, x2, m) :⇔ (∃u1 � x1)(∃u2 � x2)[SRS(x1, u1) & SRS(x2, u2) &

& Plus(u1, u2, m) & SRS(x, m) & (∀y � x1)(y ∈ x1 → y ∈ x) &

& (∀y � x2)(y ∈ x2 → (∃y1, y2 � y)(∃v1 � x)(J(y1, y2, y) &

& Plus(u1, y1, v1) & u1 ≤ n & u2 ≤ n & J(v1, y2) ∈ x)].

516 ZLATAN DAMNJANOVIC

This is a strictly rudimentary predicate and hence TOTAL. We then set

LP〈0〉0(x, m, n) :⇔ (∃x1, x2 � x)(∃m1, m2 � m)(∃u1, u2 � n)

(SRS(x1, m1) & SRS(x2, m2) & LP〈0〉(x1, m1, u1) &

& LP0(x2, m2, u2) & CONC(x, x1, x2, m) & Plus(m1, m2, m)),

which defines the set of Gödel numbers of 〈L0〉L0 programs of length m with vari-
ables from Vn. To define the complement of this set, it is convenient to introduce the
following abbreviation. Given some 3-place predicate ϕ(x, y, z), let U(x, m, k, n, ϕ)

stand for

(∃u � x)(∃p � m)(Plus(k, p, m) & SRS(u, p) &

& (∀v1, v2 � x)(∃q � m)(J(v1, v2) ∈ x & k < v1 ≤ m →
→ Plus(q, k, v1) & J(q, v2) ∈ u & ¬ϕ(u, p, n)].

Then

¬LP〈0〉0(x, m, n) :⇔ ¬SRS(x, m) ∨ (SRS(x, m) &

& (∀z, k � x)(SRS(z, k) & k < m → (¬LP〈0〉(z, k, n) ∨ (LP〈0〉(z, k, n) &

& U(x, m, k, n, LP0))))).

We let

LP1(k, x, n) :⇔ SRS0(x, k) & (∃z � x)(∃m � z)(J(0, z) ∈ x & LP0(z, m, n)) &

& (∀i � x)(0 < i ≤ k → (∃u � x)(∃m � u)(J(i, u) ∈ x & LP〈0〉0(u, m, n))),

and

¬LP1(k, x, n) :⇔ ¬SRS0(x, k) ∨ (SRS0(x, k) & (∃z � x)((J(0, z) ∈ x &

& (∀m � z)¬LP0(z, m, n)) ∨ (∃i � z)(0 < i ≤ k & J(i, z) ∈ x &

& (∀m � z)¬LP〈0〉0(z, m, n)))).

Then LP1(k, x, n) holds just in case x is the Gödel number of an Lk
2 program all

of whose variables are in Vn. To obtain a PRUD definition of LP〈1〉(x, m, n) and
¬LP〈1〉(x, m, n), we replace the predicate LP0 in the definitions of LP〈0〉, and ¬LP〈0〉,
by (∃k �)LP1. Analogous remarks apply to the definitions of LP〈1〉1(x, m, n) and
¬LP〈1〉1(x, m, n). Thus LP〈1〉1 defines the set of Gödel numbers of 〈L1〉L1 programs.
PRUD definitions of LP2(k, x, n) and ¬LP2(k, x, n) are obtained in the same way as
the definitions of LP1(k, x, n) and ¬LP1(k, x, n), the sole difference being that LP0

and LP〈0〉0 are replaced by LP1 and LP〈1〉1.

Appendix Appendix 2 We now proceed to arithmetize computations on LOOP pro-
grams. We first set

ID(x, m, n) :⇔ (∃i � m)(∃ j, k, q � x)(∃v1, v2, v3 � x)(Plus(i, 1, q) &

& J(j, k, v1) & J(q, v1, v2) & J(v2, v3, x) & SRS0(v3, n)),

ELEMENTARY FUNCTIONS 517

meaning “x is the Gödel number of an instantaneous description (i.d.) for a program
coded by an indexed series of length m and with variables from Vn.” Then ID is
strictly rudimentary and so TOTAL. Also, let

Fin(x, m) :⇔ (∃n, u, v � x)(ID(x, m, n) & KK(x) = u & Plus(m, 1, u))

define “x is a final i.d. for a program coded by an indexed series of length m.”
We define several auxiliary predicates that will help us describe the process of

computation step-by-step. Let

Y1(x1, x2, n, y) :⇔ (∀ j, v � x1)[j ≤ n & J(j, v) ∈ L(x1) →
→ ((j �= L(y) → J(j, v) ∈ L(x2)) & (j = L(y) → J(j, 0) ∈ L(x2)))];

Y2(x1, x2, n, y) :⇔ (∀ j, v � x1)[j ≤ n & J(j, v) ∈ L(x1) →
→ ((j �= L(y) → J(j, v) ∈ L(x2)) & (j = L(y) →
→ (∃u � x2)(Plus(v, 1, u) & J(j, u) ∈ L(x2))))];

Y3(x1, x2, n, y) :⇔ (∀ j, v � x1)[j ≤ n & J(j, v) ∈ L(x1) → ((j �= KL(y) →
→ J(j, v) ∈ L(x2)) & (j = KL(y) → (∀w � x1)(J(KK(y),w) ∈ L(x1) →
→ J(j,w) ∈ L(x2)))))];

Y4(x1, x2, n, i, k, y) :⇔ (∀v � x1)[J(LL(y), v) ∈ x1 →
→ ((v = 0 → (∃v1, v2 � x2)(Plus(i, k, v1) & Plus(v, 1, v2) &

& KK(x2) = v2)) & (v �= 0 → (∃v1 � x2)(Plus(i, 1, v1) & KK(x2) = v1))] &

& (∀ j, v � x1)[j ≤ n & J(j, v) ∈ L(x1) → J(j, v) ∈ L(x2)];
Y5(x1, x2, z, k) :⇔ (∀w � z)(∀q, v � x1)(J(k,w) ∈ z & J(q, v) ∈ L(x1) →

→ (q �= LL(w) → J(q, v) ∈ L(x2)) & (q = LL(w) →
→ (∃v1 � v)[Plus(v1, 1, v) & J(LL(w), v1) ∈ L(x2))))].

This enables us to define the PRUD relation,

Y∗(z, x1, x2, n, y, k1, k2) :⇔ ((Z(y) & Plus(k1, 1, k2) & Y1(x1, x2, n, y))∨
∨(SC(y) & Plus(k1, 1, k2) & Y2(x1, x2, n, y)) ∨
∨(A(y) & Plus(k1, 1, k2) & Y3(x1, x2, n, y)) ∨
∨(∀p � z)[(LOOP(y, p) → Y4(x1, x2, n, i, p, y)) &

& (END(y, p) → (∃k3 � x2)(Plus(k3, p, k1) &

& Plus(k3, 1, k2) → Y5(x1, x2, z, k2)))).

We let Yield(z, x1, x2) abbreviate:

(∃m � z)(∃n � x1)(∃i1, j1, k1 � x1)(∃i2, j2, k2 � x2)(∃m′ � m + 1)[SRS0(z, m) &

& ID(x1, m, n) & ID(x2, m, n) & K(x1) = J(i1, J(j1, k1)) &

& K(x2) = J(i2, J(j2, k2)) & Plus(m, 1, m′) & 0 ≤ i1 ≤ m & 0 ≤ i2 ≤ m′ &

& (∃y � z)(∃r � y)(∃u � y)(∃q � u)((i1 = 0 → LP1(r, y, n)) &

& A(y, i1, j1, u, r, q, m, n) & (1 ≤ k1 ≤ q → Y∗(y, x1, x2, n, u, k1, k2) &

& j1 = j2 & i1 = i2) & (j1 < r & k1 = q → (∃v � y)(∃q1 � v)(J(j2, v) ∈ y &

518 ZLATAN DAMNJANOVIC

& LP〈0〉0(v, q1, n) & k2 = 1 & Plus(j1, 1, j2) & i1 = i2 &

& L(x1) = L(x2))) & (i1 < m & j1 = r &

& k1 = q → (∃w � z)(∃s � w)(∃t � s)(∃q2 � t)(J(i2,w) ∈ z &

& Plus(i1, 1, i2) & j2 = 0 & k2 = 1 & L(x1) = L(x2) &

& A(w, i2, j2, t, s, q2, m, n))) & (i1 = m & j1 = r &

& k1 = q → i2 = m′ & j2 = 0 & k2 = 1 & L(x1) = L(x2)))]

where

A(y, i, j, u, r, q, m, n) :⇔ (0 < i ≤ m → LP〈1〉1(r, y, n)) & (j = 0 →
→ LP0(u, q, n)) & (j > 0 → LP〈0〉0(u, q, n)).

Then Yield(z, x1, x2) holds iff the i.d. with Gödel number x1 yields the i.d. with
Gödel number x2 according to the Lk

2 program with Gödel number z. Note that when-
ever z is the Gödel number of some Lk

2 program and x1 is the Gödel number of an
appropriate i.d., then an x2 such that Yield(z, x1, x2) is uniquely determined.

For each n ≥ 1, we let Initn(�xn, z, y) abbreviate:

(∃y2 � y)(K(y) = J(0, J(0, 1)) & L(y) = y2 & SRS0(y2, z) &

& (∃z1 � z)(2 · n ≤ z1 ≤ z & n ≥ 1 & (∀ j, v � y2)(∀i � z)(J(j, v) ∈ y2 →
→ i < n → (∃i1, i2 � z)(Plus(i, 1, i1) & Times(2, i1, i2) &

& (j �= i2 → v = 0)) & J(2, x1) ∈ y2 & J(4, x2) ∈ y2 & . . .

& J(2 · n, xn) ∈ y2))).

Then Initn(�xn, z, y) holds just in case y is the Gödel number of the i.d. that corre-
sponds to the initial state of the register machine in which the variables V2, V4, . . . ,

V2n are assigned the values x1, . . . , xn, respectively, and all the other variables Vj (0 ≤
j < z) are assigned the value 0. Clearly, Initn(�xn, z, y) is a PRUD graph of a function
Init∗n(�xn, z).

We let

R(k, z, y, u) :⇔ (∃m, n � z)(LP2(k, z, n) & k > 0 & SRS0(z, m) &

& ID(y, m, n) & Yield(z, y, u)) ∨ ((k = 0 ∨ (∀m, n � z)¬ID(y, m, n) ∨
∨(∀n � z)¬LP2(k, z, n)) & u = 0).

Again, we note that for any k, z, and y, an integer u such that R(k, z, y, u) is uniquely
determined and = µu R(k, z, y, u). Hence the latter function has a PRUD graph. We
introduce the function H by the following recursion:

H(y, �xn, k, m, 0) := J∗(k + 1, Init∗n(�xn, m))

H(y, �xn, k, m, i + 1) := J∗(H(y, �xn, k, m, i), µu R(k, y, L∗(H(y, �xn, k, m, i)), u)

If we let,

G(y, �xn, k, m) := J∗(Un+3
n+2 (y, �xn, k, m) + 1, Init∗n(�xn, m))

ELEMENTARY FUNCTIONS 519

and

F(y, �xn, k, m, i, z) := J∗(Un+5
n+5 (y, �xn, k, m, i, z), µu R(k, y, L∗(z), u)

then
H(y, �xn, k, m, 0) = G(y, �xn, k, m)

and
H(y, �xn, k, m, i + 1) = F(y, �xn, k, m, i, H(y, �xn, k, m, i)).

It is easily seen that the function J∗ has a PRUD graph given that + and × do,
and the same applies to the associated projection functions K∗ and L∗. Since J∗ is
increasing, it is clear that the compositions G and F have PRUD graphs. To conclude
that H has a PRUD graph, it remains only to verify that H satisfies the conditions of
Theorem 4.2.

Note that 0 < G(y, �xn, k, m) = H(y, �xn, k, m, 0). Furthermore, assuming that
i < H(y, �xn, k, m, i), we have that,

0 ≤ i < H(y, �xn, k, m, i) = K∗(H(y, �xn, k, m, i + 1)) < H(y, �xn, k, m, i + 1),

and so i + 1 < H(y, �xn, k, m, i + 1). It follows that,

i < H(y, �xn, k, m, i) (1)

for all i, y, �xn, k, m. On the other hand, from the definitions of F and J∗, we imme-
diately have that,

(H(y, �xn, k, m, i))2 ≤ F(y, �xn, k, m, i, H(y, �xn, k, m, i)) = (2)

= H(y, �xn, k, m, i + 1).

Let H+ be a PRUD graph of the function H, and let

Tn(k, y, �xn, i, u) ⇔ (∃y1, y2, y3 ≤ y)[J∗(y1, J∗(y2, y3)) = y & LP2(k, y1, y3) &

& y3 ≥ 2 · n & H+(y, �xn, k, y3, i, u) & Fin(L∗(u), y2)].

Then we let,

OUTPUT(z, y) ⇔ (∃z1 ≤ z)(L(z, z1) & J(0, y) ∈ z1).

Appendix Appendix 3
Proof of Lemma 6.1: (a) is proved by induction on n. The case n = 2 is immedi-
ate by the definition of dyadic concatenation. From that definition and the induction
hypothesis we have that,

a1 ∗ · · · ∗ an ∗ an+1 = a(2(n−1)l(a) + · · · + 2l(a) + 1) · 2l(a) + a =
= a(2n·l(a) + 2(n−1)l(a) + · · · + 2l(a)) + a

= a(2n·l(a) + 2(n−1)l(a) + · · · + 2l(a)) + 1),

provided an+1 = a.

520 ZLATAN DAMNJANOVIC

For (b), let us first abbreviate a concatenation a0 ∗ a1 ∗ · · · ∗ an by “a0a1 . . . an.”
A tally is a string of 1s. The sequence number (a1, . . . , an)

is of the form v̊a1v̊a2v̊ . . .

v̊anv̊ where v̊ = 2v2 and v is the smallest tally that is not a part of any ai. Then
(a1, . . . , an)

≤ (y1, . . . , yn)
#, where yi = y for each i, 1 ≤ i ≤ n, and the sequence

number (y1, . . . , yn)
is of the form ẘy1ẘy2ẘ . . . ẘynẘ where w is the smallest tally

that is not a part of y. Then w < 2(2l(y)+1 − 1) and ẘ < 2(2l(y)+3 − 1). Since
2l(y) − 1 ≤ y ≤ 2(2l(y) − 1), it follows that ẘ < 25 · y, and so,

(a1, . . . , an)
< z1 ∗ · · · ∗ z2n+1,

where zi = 25 · y for each i, 1 ≤ i ≤ 2n + 1. But then, by (a), if we let α(y) = 25 · y,
we have that,

(a1, . . . , an)
< α(y) · 22n·l(α(y)) + 2(2n−1)·l(α(y)) + · · · + 2l(α(y)) + 1) <

< α(y) · (2n·(2n+1)·l(α(y)) + 1) = (25 · y)(2r·l(25·y) + 1) < (26 · y) · 2r·l(25·y),

where r := n(2n + 1). Since 2l(25·y) ≤ 25 · y + 1, we then derive

(a1, . . . , an)
< (26 · y)(25 · y + 1)r < (26 · y)(26 · y)r = (26 · y)r+1

as required.

NOTES

1. Here

x .− y :=
{

x − y if y ≤ x
0 if y > x

;

the last two operations are usually defined by primitive recursion:

�y<0 f (�xn, y) := 0 �y<z+1 f (�xn, y) := �y<z f (�xn, y) + f (�xn, z)

and
y<0 f (�xn, y) := 1 y<z+1 f (�xn, y) := y<z f (�xn, y) · f (�xn, z).

(The sign “:=” means that the identity in question holds by definition.) In general, the el-
ementary functions are not closed under primitive recursion, and thus they form a proper
subclass of the primitive recursive (p.r.) functions: e.g., superexponentiation (i.e., iter-
ated exponential) is not elementary.

2. A different hierarchy of elementary functions based on an idea similar to Ritchie’s but
using register machine programs (see below) instead of Turing machines was given by
Cleave [4]. These and other hierarchies of elementary functions are compared in Her-
man [11]. For textbook treatments of elementary functions see Rose [17], Brainerd and
Landweber [3], or Cutland [6].

3. See, e.g., [3], pp. 269–270. Whether or not this is the case, it would be a mistake to con-
clude that the Church-Turing model of computability should therefore be abandoned as
obsolete. An unacceptable price would have to be paid in terms of efficiency. A funda-
mental theorem due to Blum implies that for any programming formalism restricted to,
say, elementary functions, there are functions for which the shortest program in such a re-
stricted formalism is simply too lengthy and runs far too long in comparison to programs
for computing the same function formulated in a formalism designed to express arbi-
trarily complex computation procedures. For a comprehensive survey of various other
approaches to bounded computability see [17].

ELEMENTARY FUNCTIONS 521

4. In Jeffrey [12], chapters 7,8, there is a detailed informal treatment of elements of the
theory of computability cast in terms of RM programs. A formally precise description
of essentially the same language, G3, is given, e.g., in Constable and Borodin [5], §2. In
Boolos and Jeffrey [2], chapters 6–8, it is proved that the functions computable by RM
programs are precisely the Turing computable functions.

5. It is easily seen that every LOOP program is equivalent to one in which the variables Vi

in the LOOP commands occur neither in the programs P to which the LOOP commands
apply nor in any of the subsequent instructions in P. (Two programs are equivalent if
they compute the same function.)

6. This was first established by Meyer and Ritchie [13], who extended the result to show
that the functions computable by LOOP programs with maximum depth of nesting ≤ n
are precisely the functions in the n + 1st class En+1 of the Grzegorczyk hierarchy of
p.r. functions, for n ≥ 2. (See[17] for more information about the latter hierarchy.) The
elementary functions form the third class, E3, of the Grzegorczyk hierarchy.

7. “ f ◦ g” stands for the composition f (g(x)) of f and g, and similarly “ f1 ◦ · · · ◦ fn”
stands for f1(f2(. . . (fn(x)) . . .)).

8. Since we are interested primarily in sets and relations of nonnegative integers, we shall
systematically interpret the numeral y as the numeral y − 1 for y − 1. Thus, e.g., “1” is
0, the numeral for 0, and “2” is 1.

9. Bennett’s view of the significance of this result is that it establishes a strong “isomor-
phism” between the theory of concatenation of strings of symbols on the one hand, and
the theory of integers on the other, at the level of “finite theories.” Quine [15] originally
showed that such a relation obtains at the level of “infinite theories” with unbounded
quantifiers allowed.

10. Proskurin [14] proved that the majorizing functions fn, n ≥ 0, that determine the Grze-
gorczyk Hierarchy of p.r. functions all have PRUD graphs, and that the same is true of
even the Ackermann function, which is known to be non-p.r.

11. Here we use some obvious abbreviations when dealing with the pairing operations J, K
and L: e.g.,

KL(x) = y :⇔ (∃z � x)(L(x, z) & K(z, y)).

REFERENCES

[1] Bennett, J. H., “On spectra,” Ph.D. thesis, Princeton University, 1962. 4, 4, 4, 4, 8

[2] Boolos, G. S. and R. C. Jeffrey, Computability and Logic, Third Edition, Cambridge
University Press, Cambridge, 1989. Zbl 0708.03001 MR 90h:03001 8

[3] Brainerd, W. S. and L. H. Landweber, Theory of Computation, Wiley, New York, 1974.
MR 53:4590 8, 8

[4] Cleave, J. P., “A hierarchy of primitive recursive functions,” Zeitschrift für mathematis-
che Logik und Grundlagen der Mathematik, vol. 9 (1963), pp. 331–345. Zbl 0224.02031
MR 28:2970 8

[5] Constable, R. L. and A. B. Borodin, “Subrecursive programming languages, part I: Ef-
ficiency and program structure,” Journal of the Association for Computing Machinery,
vol. 19 (1972), pp. 526–568. Zbl 0259.68036 7, 7, 8

[6] Cutland, N. J., Computability: An Introduction to Recursive Function Theory, Cam-
bridge University Press, Cambridge, 1980. Zbl 0448.03029 MR 81i:03001 1, 8

http://www.emis.de/cgi-bin/MATH-item?0708.03001
http://www.ams.org/mathscinet-getitem?mr=90h:03001
http://www.ams.org/mathscinet-getitem?mr=53:4590
http://www.emis.de/cgi-bin/MATH-item?0224.02031
http://www.ams.org/mathscinet-getitem?mr=28:2970
http://www.emis.de/cgi-bin/MATH-item?0259.68036
http://www.emis.de/cgi-bin/MATH-item?0448.03029
http://www.ams.org/mathscinet-getitem?mr=81i:03001

522 ZLATAN DAMNJANOVIC

[7] Damnjanovic, Z., “Elementary realizability,” forthcoming in Journal of Philosophical
Logic. Zbl 0874.03067 MR 98j:03088 1

[8] Davis, M. D. and E. J. Weyuker, Computability, Complexity, and Languages: Funda-
mentals of Theoretical Computer Science, Academic Press, New York, 1983.
Zbl 0569.68042 MR 86b:03001 1, 2, 2, 3, 6

[9] Goetze, B. and W. Nehrlich, “The structure of loop programs and subrecursive hierar-
chies,” Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 26
(1980), pp. 255–278. Zbl 0439.03018 MR 81j:03066 1, 1, 3, 3

[10] Harrow, K., “The bounded arithmetic hierarchy,” Information and Control, vol. 36
(1978), pp. 102–117. Zbl 0374.02019 MR 57:16010 4

[11] Herman, G. T., “The equivalence of different hierarchies of elementary functions,”
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971),
pp. 219–224. Zbl 0222.02043 MR 44:6494 8

[12] Jeffrey, R. C., Formal Logic: Its Scope and Limits, Third Edition, McGraw Hill, New
York, 1991. Zbl 0925.03002 8

[13] Meyer, A. R. and D. M. Ritchie, “The complexity of loop programs,” pp. 465–469 in
Proceedings of the 22nd National Conference of the Association for Computing Ma-
chinery, Thompson, Washington, D.C., 1967. 2, 2, 3, 7, 8

[14] Proskurin, A. V., “Positive rudimentarity of the graphs of Ackermann and Grzegor-
czyk,” (in Russian), Journal of Soviet Mathematics, vol. 20 (1982), pp. 2363–2366.
Zbl 0493.03017 MR 81b:03044 4, 8

[15] Quine, W. V. O., “Concatenation as a basis for arithmetic,” Journal of Symbolic Logic,
vol. 11 (1946), pp. 105-114. Zbl 0063.06362 MR 8,307b 8

[16] Ritchie, R. W., “Classes of predictably computable functions,” Transactions of the
American Mathematical Society, vol. 106 (1963), pp. l39-173. Zbl 0107.01001
MR 28:2045 1, 4

[17] Rose, H. E., Subrecursion: Functions and Hierarchies, Clarendon Press, Oxford, 1984.
Zbl 0539.03018 MR 86g:03004 8, 8, 8

[18] Smullyan, R. M., Theory of Formal Systems, Annals of Mathematics Studies, vol. 47,
Princeton University Press, Princeton, 1961. Zbl 0097.24503 MR 22:12042 4, 4, 4, 6,
8

School of Philosophy
University of Southern California
3709 Trousdale Parkway
Los Angeles, CA 90089-0451

http://www.emis.de/cgi-bin/MATH-item?0874.03067
http://www.ams.org/mathscinet-getitem?mr=98j:03088
http://www.emis.de/cgi-bin/MATH-item?0569.68042
http://www.ams.org/mathscinet-getitem?mr=86b:03001
http://www.emis.de/cgi-bin/MATH-item?0439.03018
http://www.ams.org/mathscinet-getitem?mr=81j:03066
http://www.emis.de/cgi-bin/MATH-item?0374.02019
http://www.ams.org/mathscinet-getitem?mr=57:16010
http://www.emis.de/cgi-bin/MATH-item?0222.02043
http://www.ams.org/mathscinet-getitem?mr=44:6494
http://www.emis.de/cgi-bin/MATH-item?0925.03002
http://www.emis.de/cgi-bin/MATH-item?0493.03017
http://www.ams.org/mathscinet-getitem?mr=81b:03044
http://www.emis.de/cgi-bin/MATH-item?0063.06362
http://www.ams.org/mathscinet-getitem?mr=8,307b
http://www.emis.de/cgi-bin/MATH-item?0107.01001
http://www.ams.org/mathscinet-getitem?mr=28:2045
http://www.emis.de/cgi-bin/MATH-item?0539.03018
http://www.ams.org/mathscinet-getitem?mr=86g:03004
http://www.emis.de/cgi-bin/MATH-item?0097.24503
http://www.ams.org/mathscinet-getitem?mr=22:12042

