Orthoimplication algebras

Studia Logica 35 (2):173 - 177 (1976)
Abstract
Orthologic is defined by weakening the axioms and rules of inference of the classical propositional calculus. The resulting Lindenbaum-Tarski quotient algebra is an orthoimplication algebra which generalizes the author's implication algebra. The associated order structure is a semi-orthomodular lattice. The theory of orthomodular lattices is obtained by adjoining a falsity symbol to the underlying orthologic or a least element to the orthoimplication algebra.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,085
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

9 ( #157,954 of 1,101,623 )

Recent downloads (6 months)

1 ( #292,019 of 1,101,623 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.