On a contraction-less intuitionistic propositional logic with conjunction and fusion

Studia Logica 65 (1):11-30 (2000)
Abstract
In this paper we prove the equivalence between the Gentzen system G LJ*\c , obtained by deleting the contraction rule from the sequent calculus LJ* (which is a redundant version of LJ), the deductive system IPC*\c and the equational system associated with the variety RL of residuated lattices. This means that the variety RL is the equivalent algebraic semantics for both systems G LJ*\c in the sense of [18] and [4], respectively. The equivalence between G LJ*\c and IPC*\c is a strengthening of a result obtained by H. Ono and Y. Komori [14, Corollary 2.8.1] and the equivalence between G LJ*\c and the equational system associated with the variety RL of residuated lattices is a strengthening of a result obtained by P.M. Idziak [13, Theorem 1].An axiomatization of the restriction of IPC*\c to the formulas whose main connective is the implication connective is obtained by using an interpretation of G LJ*\c in IPC*\c
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,612
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #201,256 of 1,098,400 )

Recent downloads (6 months)

5 ( #57,103 of 1,098,400 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.