On amalgamation in algebras of logic

Studia Logica 81 (1):61 - 77 (2005)
We show that not all epimorphisms are surjective in certain classes of infinite dimensional cylindric algebras, Pinter's substitution algebras and Halmos' quasipolyadic algebras with and without equality. It follows that these classes fail to have the strong amalgamation property. This answers a question in [3] and a question of Pigozzi in his landmark paper on amalgamation [9]. The cylindric case was first proved by Judit Madarasz [7]. The proof presented herein is substantially different. By a result of Németi, our result implies that the Beth-definability Theorem fails for certain expansions of first order logic
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
DOI 10.2307/20016731
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

11 ( #219,154 of 1,726,249 )

Recent downloads (6 months)

4 ( #183,615 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.