On the logic of theory change: Partial meet contraction and revision functions

Journal of Symbolic Logic 50 (2):510-530 (1985)
Abstract
This paper extends earlier work by its authors on formal aspects of the processes of contracting a theory to eliminate a proposition and revising a theory to introduce a proposition. In the course of the earlier work, Gardenfors developed general postulates of a more or less equational nature for such processes, whilst Alchourron and Makinson studied the particular case of contraction functions that are maximal, in the sense of yielding a maximal subset of the theory (or alternatively, of one of its axiomatic bases), that fails to imply the proposition being eliminated. In the present paper, the authors study a broader class, including contraction functions that may be less than maximal. Specifically, they investigate "partial meet contraction functions", which are defined to yield the intersection of some nonempty family of maximal subsets of the theory that fail to imply the proposition being eliminated. Basic properties of these functions are established: it is shown in particular that they satisfy the Gardenfors postulates, and moreover that they are sufficiently general to provide a representation theorem for those postulates. Some special classes of partial meet contraction functions, notably those that are "relational" and "transitively relational", are studied in detail, and their connections with certain "supplementary postulates" of Gardenfors investigated, with a further representation theorem established
Keywords belief revision contraction
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

View all 146 citations

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

140 ( #6,067 of 1,102,912 )

Recent downloads (6 months)

17 ( #10,303 of 1,102,912 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.