An axiomatic version of Fitch's paradox

Synthese 190 (12):2015-2020 (2013)
Abstract
A variation of Fitch’s paradox is given, where no special rules of inference are assumed, only axioms. These axioms follow from the familiar assumptions which involve rules of inference. We show (by constructing a model) that by allowing that possibly the knower doesn’t know his own soundness (while still requiring he be sound), Fitch’s paradox is avoided. Provided one is willing to admit that sound knowers may be ignorant of their own soundness, this might offer a way out of the paradox
Keywords Knowledge  Epistemology  Knowability  Paradox  Fitch’s paradox
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2012-01-05

Total downloads

76 ( #18,363 of 1,102,926 )

Recent downloads (6 months)

3 ( #120,639 of 1,102,926 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  is 1 thread in this forum
2012-02-14
notation : I use ! for 'not'

Perhaps you can avoid paradox but you have to admit this very strange proposition :
K !K x ->  !P K x
If you know that you ignore (x) it's impossible that you know (x)

I don't see how it could be compatible with the knowability principle :
x ->  P K x
else you can't have
(x) and (K !K x)

(excuse me if this message is out of place, I ignore the policy of tis forum,
excuse also my probable mistakes in english)
Latest replies: Permanent link: http://philpapers.org/post/6605 Reply