A Kripke semantics for the logic of Gelfand quantales

Studia Logica 68 (2):173-228 (2001)
Abstract
Gelfand quantales are complete unital quantales with an involution, *, satisfying the property that for any element a, if a b a for all b, then a a* a = a. A Hilbert-style axiom system is given for a propositional logic, called Gelfand Logic, which is sound and complete with respect to Gelfand quantales. A Kripke semantics is presented for which the soundness and completeness of Gelfand logic is shown. The completeness theorem relies on a Stone style representation theorem for complete lattices. A Rasiowa/Sikorski style semantic tableau system is also presented with the property that if all branches of a tableau are closed, then the formula in question is a theorem of Gelfand Logic. An open branch in a completed tableaux guarantees the existence of an Kripke model in which the formula is not valid; hence it is not a theorem of Gelfand Logic
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,141
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

9 ( #139,820 of 1,095,487 )

Recent downloads (6 months)

2 ( #84,324 of 1,095,487 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.