Kripke models for linear logic

Journal of Symbolic Logic 58 (2):514-545 (1993)
We present a Kripke model for Girard's Linear Logic (without exponentials) in a conservative fashion where the logical functors beyond the basic lattice operations may be added one by one without recourse to such things as negation. You can either have some logical functors or not as you choose. Commutatively and associatively are isolated in such a way that the base Kripke model is a model for noncommutative, nonassociative Linear Logic. We also extend the logic by adding a coimplication operator, similar to Curry's subtraction operator, which is resituated with Linear Logic's contensor product. And we can add contraction to get nondistributive Relevance Logic. The model rests heavily on Urquhart's representation of nondistributive lattices and also on Dunn's Gaggle Theory. Indeed, the paper may be viewed as an investigation into nondistributive Gaggle Theory restricted to binary operations. The valuations on the Kripke model are three valued: true, false, and indifferent. The lattice representation theorem of Urquhart has the nice feature of yielding Priestley's representation theorem for distributive lattices if the original lattice happens to be distributive. Hence the representation is consistent with Stone's representation of distributive and Boolean lattices, and our semantics is consistent with the Lemmon-Scott representation of modal algebras and the Routley-Meyer semantics for Relevance Logic
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275217
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 20,866
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

View all 7 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

47 ( #89,919 of 1,907,145 )

Recent downloads (6 months)

6 ( #129,026 of 1,907,145 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.