Parsimony hierarchies for inductive inference

Journal of Symbolic Logic 69 (1):287-327 (2004)
Abstract
Freivalds defined an acceptable programming system independent criterion for learning programs for functions in which the final programs were required to be both correct and "nearly" minimal size, i.e., within a computable function of being purely minimal size. Kinber showed that this parsimony requirement on final programs limits learning power. However, in scientific inference, parsimony is considered highly desirable. A lim-computablefunction is (by definition) one calculable by a total procedure allowed to change its mind finitely many times about its output. Investigated is the possibility of assuaging somewhat the limitation on learning power resulting from requiring parsimonious final programs by use of criteria which require the final, correct programs to be "not-so-nearly" minimal size, e.g., to be within a lim-computable function of actual minimal size. It is shown that some parsimony in the final program is thereby retained, yet learning power strictly increases. Considered, then, are lim-computable functions as above but for which notations for constructive ordinals are used to bound the number of mind changes allowed regarding the output. This is a variant of an idea introduced by Freivalds and Smith. For this ordinal notation complexity bounded version of lim-computability, the power of the resultant learning criteria form finely graded, infinitely ramifying, infinite hierarchies intermediate between the computable and the lim-computable cases. Some of these hierarchies, for the natural notations determining them, are shown to be optimally tight
Keywords Computational learning theory   minimal size program   constructive ordinal notations   limiting computable function
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,793
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-02-05

Total downloads

8 ( #176,468 of 1,099,722 )

Recent downloads (6 months)

5 ( #66,629 of 1,099,722 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.