Describing groups

Bulletin of Symbolic Logic 13 (3):305-339 (2007)
Two ways of describing a group are considered. 1. A group is finite-automaton presentable if its elements can be represented by strings over a finite alphabet, in such a way that the set of representing strings and the group operation can be recognized by finite automata. 2. An infinite f.g. group is quasi-finitely axiomatizable if there is a description consisting of a single first-order sentence, together with the information that the group is finitely generated. In the first part of the paper we survey examples of FA-presentable groups, but also discuss theorems restricting this class. In the second part, we give examples of quasi-finitely axiomatizable groups, consider the algebraic content of the notion, and compare it to the notion of a group which is a prime model. We also show that if a structure is bi-interpretable in parameters with the ring of integers, then it is prime and quasi-finitely axiomatizable
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Frank O. Wagner (1991). Small Stable Groups and Generics. Journal of Symbolic Logic 56 (3):1026-1037.

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,128 of 1,088,378 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,378 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.