University Press of America (2002)
A-LOGIC is a full-length book (600+ pg). It functions as a system of logic designed to: 1) solve the standard paradoxes and major problems of standard mathematical logic; 2) minimize that logic's anomalies with respect to ordinary language, yet; 3) prove that all theorems in mathematical logic are tautologies. It covers lst order logic the logic of the words "and", "or", "not", "all" and "some". But it also has a non truth functional "if...then" and differs in its definition of validity, its semantics and its theorems. In the book A-logic is contrasted step by step with standard mathematical logic as presented and defended by Quine. All of standard logic's theorems are proven tautologies in A-logic. But some argument-forms called "valid" in standard logic are not valid in A-logic -- notably non-sequiturs like "(P and not-P), therefore Q". In addition A-logic has many tautologies with its non-truthfunctional "if ... then" that standard logic can not derive -- e.g., "Not-(if P&Q then not-P)." A-logic's semantics is based on syntactically defined concepts of logical synonymy and containment of meanings rather than on truth-values and truth-functions. Its "if...then" sentences (called "C-conditionals") are valid if and only if (i) the meaning of the consequent is logically contained in that of the antecedent, and (ii) the antecedent and consequent are jointly consistent. The predicate "valid" holds only of C-conditionals and arguments. No valid C-conditionals are translatable into standard logic though all of them imply tautologies of standard logic
Keywords Logic
Categories (categorize this paper)
Buy the book $32.00 used (73% off)   $117.50 direct from Amazon   $191.32 new    Amazon page
Call number BC71.A64 2002
ISBN(s) 0761822356  
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,822
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
Kit Fine (forthcoming). Angellic Content. Journal of Philosophical Logic:1-28.

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads

2 ( #533,082 of 1,724,745 )

Recent downloads (6 months)

1 ( #349,121 of 1,724,745 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.