A directly cautious theory of defeasible consequence for default logic via the notion of general extension

Artificial Intelligence 109 (1-2):71-109 (1999)
This paper introduces a generalization of Reiter’s notion of “extension” for default logic. The main difference from the original version mainly lies in the way conflicts among defaults are handled: in particular, this notion of “general extension” allows defaults not explicitly triggered to pre-empt other defaults. A consequence of the adoption of such a notion of extension is that the collection of all the general extensions of a default theory turns out to have a nontrivial algebraic structure. This fact has two major technical fall-outs: first, it turns out that every default theory has a general extension; second, general extensions allow one to define a well-behaved, skeptical relation of defeasible consequence for default theories, satisfying the principles of Reflexivity, Cut, and Cautious Monotonicity formulated by D. Gabbay
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,986
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles

Monthly downloads

Added to index


Total downloads

6 ( #229,925 of 1,410,004 )

Recent downloads (6 months)

1 ( #176,758 of 1,410,004 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.