Uniqueness of normal proofs in implicational intuitionistic logic

A minimal theorem in a logic L is an L-theorem which is not a non-trivial substitution instance of another L-theorem. Komori (1987) raised the question whether every minimal implicational theorem in intuitionistic logic has a unique normal proof in the natural deduction system NJ. The answer has been known to be partially positive and generally negative. It is shown here that a minimal implicational theorem A in intuitionistic logic has a unique -normal proof in NJ whenever A is provable without non-prime contraction. The non-prime contraction rule in NJ is the implication introduction rule whose cancelled assumption differs from a propositional variable and appears more than once in the proof. Our result improves the known partial positive solutions to Komori's problem. Also, we present another simple example of a minimal implicational theorem in intuitionistic logic which does not have a unique -normal proof in NJ
Keywords Natural deduction  uniqueness of normal proofs  coherence  minimal formulas  Komori's  non-prime contraction
Categories (categorize this paper)
DOI 10.1023/A:1008254111992
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,831
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

23 ( #126,204 of 1,724,757 )

Recent downloads (6 months)

7 ( #93,245 of 1,724,757 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.