Exactly controlling the non-supercompact strongly compact cardinals

Journal of Symbolic Logic 68 (2):669-688 (2003)
Abstract
We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and unify Theorems 1 and 2 of [5], due to the first author
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Joel D. Hamkins (2009). Tall Cardinals. Mathematical Logic Quarterly 55 (1):68-86.
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #188,399 of 1,102,934 )

Recent downloads (6 months)

5 ( #62,013 of 1,102,934 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.