Visual thinking in mathematics • by Marcus Giaquinto

Analysis 69 (2):401-403 (2009)
Abstract
Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late 19th century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis received much attention in the 19th century. They helped to instigate what Hans Hahn called a ‘crisis of intuition’, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this ‘crisis’ as follows : " Mathematicians had for a long time made use of supposedly geometric evidence as a means of proof in much too naive and much too uncritical a way, till the unclarities and mistakes that arose as a result forced a turnabout. Geometrical intuition was now declared to be inadmissible as a means of proof … "Avoiding geometrical evidence, Hahn continued, mathematicians aware of this crisis pursued what he called ‘logicization’, ‘when the discipline requires nothing but purely logical fundamental concepts and propositions for its development’. On this view, an epistemically ideal mathematics would minimize, or avoid altogether, appeals …
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 13,618
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-04-11

Total downloads

75 ( #23,829 of 1,692,788 )

Recent downloads (6 months)

6 ( #38,408 of 1,692,788 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.