Knowing and supposing in games of perfect information

Studia Logica 86 (3):353 - 373 (2007)
Abstract
The paper provides a framework for representing belief-contravening hypotheses in games of perfect information. The resulting t-extended information structures are used to encode the notion that a player has the disposition to behave rationally at a node. We show that there are models where the condition of all players possessing this disposition at all nodes (under their control) is both a necessary and a sufficient for them to play the backward induction solution in centipede games. To obtain this result, we do not need to assume that rationality is commonly known (as is done in [Aumann (1995)]) or commonly hypothesized by the players (as done in [Samet (1996)]). The proposed model is compared with the account of hypothetical knowledge presented by Samet in [Samet (1996)] and with other possible strategies for extending information structures with conditional propositions
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    9 ( #128,813 of 1,088,725 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,725 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.